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ЦИФРОВОЕ КАРТОГРАФИРОВАНИЕ АГРОХИМИЧЕСКИХ СВОЙСТВ 
В ДЕТАЛЬНОМ МАСШТАБЕ С ПРИМЕНЕНИЕМ БПЛА 

АННОТАЦИЯ 
Проведена оценка эффективности применения данных беспилотной аэрофотосъем-

ки (БПЛА) для повышения точности агрохимического картографирования. Определена 
практическая значимость интеграции топографических и спектральных предикторов, по-
лученных с БПЛА в моделях цифрового почвенного картографирования. Исследования 
проведены в Нечерноземной зоне на территории Пермского муниципального округа 
Пермского края. Объект исследований — участок на учебно-научном опытном поле 
ФГБОУ ВО Пермский ГАТУ г. Перми. Отбор проб почвы проведен до посева культуры с 
глубины 0–20 см по фиксированной сетке 100×200 м. Собран набор точечных агрохими-
ческих данных (точечные пробы и данные с пахотного слоя в разрезах) по четырем 
показателям (гумус, минеральный азот, фосфор, калий) и выполнено их пространственное 
моделирование методом «обычный кригинг». С помощью БПЛА были получены высоко-
детальные данные, на основе которых рассчитаны топографические и спектральные пре-
дикторы. Методом корреляционного анализа (Scatterplot в SAGA GIS) выявлены наиболее 
информативные предикторы, обладающие статистически значимой связью с агрохимичес-
кими свойствами почв. Для картографирования агрохимических показателей в качестве 
входных переменных в модель машинного обучения (метод Random Forest) использованы 
выявленные информативные предикторы. Полученные карты свойств сравнивали с ре-
зультатами исходной интерполяции с использованием RMSE. Дополнительно исследовано, 
влияет ли улучшенная точность прогнозирования на практическую агрономическую 
значимость — на примере расчета потребности почв в фосфорных удобрениях. Сравнение 
результатов машинного обучения и геостатистических методов (кригинг) позволяет сде-
лать вывод о целесообразности использования БПЛА в рамках систем точного земледелия 
с возможностью оптимизации распределения минеральных удобрений. 

КЛЮЧЕВЫЕ СЛОВА: агрохимические свойства почв, цифровая почвенная картография, 
аэрофотосъемка с БПЛА, предикторы, машинное обучение, кригинг 
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DIGITAL MAPPING OF AGROCHEMICAL PROPERTIES 
ON A DETAILED SCALE USING UAVS 

ABSTRACT 
The effectiveness of using aerial photography from an unmanned aerial vehicle (UAV) 

data to improve the accuracy of agrochemical mapping has been evaluated. The practical signi-
ficance of integrating topographic and spectral predictors obtained from UAVs in digital soil 
mapping models has been determined. The research was conducted in the Non-Chernozem zone 
on the territory of the Perm Municipal District of the Perm Territory. The object of research is a 
site at the educational and scientific experimental field of the Perm SATU, Perm. Soil sampling 
was carried out before sowing the crop from a depth of 0–20 cm on a fixed grid of 100×200 m. 
A set of point agrochemical data (spot samples and data from the arable layer in sections) was 
collected for four indicators (humus, mineral nitrogen, phosphorus, potassium) and their spatial 
modeling was performed using the “ordinary kriging” method. Using the UAV, highly detailed 
data was obtained, on the basis of which topographic and spectral predictors were calculated. The 
method of correlation analysis (Scatterplot in SAGA GIS) revealed the most informative predictors 
with a statistically significant relationship with the agrochemical properties of soils. The identified 
informative predictors were used to map agrochemical indicators as input variables to the machine 
learning model (Random Forest method). The obtained property maps were compared with the 
results of the initial interpolation using RMSE. Additionally, it was investigated whether the 
improved forecasting accuracy affects the practical agronomic significance, using the example of 
calculating soil demand for phosphorous fertilizers. A comparison of the results of machine 
learning and geostatistical methods (kriging) allows us to conclude that it is advisable to use UAVs 
in precision farming systems, with the possibility of optimizing the distribution of mineral 
fertilizers. 

KEYWORDS: agrochemical properties of soils, digital soil cartography, aerial photography from 
UAVs, predictors, machine learning, kriging 

ВВЕДЕНИЕ 
Цифровое картографирование континуальных свойств почвенного покрова в де-

тальном масштабе может быть осуществлено в комплексе, сочетающем применение бес-
пилотных летательных аппаратов (БПЛА) [Савин, 2015], лабораторные исследования 
индивидуальных почвенных проб [Цифровая почвенная картография…, 2017] и методов 
машинного обучения [Докучаев, 2017]. Такой подход позволяет учитывать как точечные 
измерения почвенных характеристик, так и пространственные закономерности их распре-
деления, выявляемые с помощью дистанционного зондирования и математико-картогра-
фического моделирования. 

Цифровые модели рельефа [Гафуров, 2017] позволяют извлекать важную инфор-
мацию о пространственной вариабельности агрохимических свойств почв. В последние 
годы использование БПЛА в почвенной картографии получило широкое распространение 
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благодаря высокой пространственной разрешающей способности съемки, оперативности 
получения данных и возможности мультиспектрального анализа [Каштанов, 2018]. Спек-
тральные индексы [Пивченко, 2019] и цифровые модели рельефа [Гафуров, 2017] на основе 
данных БПЛА позволяют извлекать важную информацию о пространственной вариа-
бельности агрохимических свойств почв. 

Одним из ключевых инструментов для анализа таких данных являются методы 
машинного обучения. Такие алгоритмы, как множественная логистическая регрессия, 
метод опорных векторов (SVM) и случайный лес (Random Forest, RF) позволяют строить 
прогнозные модели, основываясь на многомерных взаимосвязях между агрохимическими 
свойствами почвы и дистанционными данными [Минаев, 2020]. Применение этих методов 
позволяет не только уточнять традиционные карты почвенных характеристик, но и 
выявлять скрытые закономерности, которые трудно обнаружить с помощью классических 
статистических и геостатистических методов. При этом, несмотря на очевидные преиму-
щества, интеграция данных БПЛА и машинного обучения в цифровое почвенное карто-
графирование требует тщательной калибровки моделей и валидации полученных карт. Для 
объективной оценки эффективности такого подхода необходимо сравнивать результаты 
моделирования с традиционными методами пространственной интерполяции и проверять 
точность прогнозов по независимым контрольным данным [Pouladi, 2019; Мудрых, 2020; 
Han, Suh, 2024]. 

В настоящее время востребованной задачей, решаемой при помощи карт агрохи-
мических свойств почв в детальном масштабе, является внедрение элементов системы 
точного земледелия, что особенно актуально при оптимизации применения минеральных 
удобрений [Куцаева, 2020; Брыжко, Шабалина, 2021; Беленков, 2025]. 

Таким образом, исследование возможностей сочетания данных БПЛА и методов 
машинного обучения для построения высокоточных карт агрохимических свойств почвы 
является актуальным направлением развития почвенной картографии на сегодняшний день. 
В связи с вышеизложенным, сформулирована цель исследований — оценить методику 
цифрового картографирования агрохимических свойств почвы на основе данных БПЛА и 
машинного обучения. 

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ 
Объектом исследования является почвенный покров ключевого участка на учебно-

научном опытном поле ФГБОУ ВО Пермский ГАТУ, г. Пермь. Площадь территории равна 
13,4 га (рис. 1). Участок представляет собой склон южной экспозиции. С применением 
аэрофотосъемки с использованием БПЛА была создана подробная почвенная карта 
обследуемого участка [Чащин, 2024]. Масштаб цифрового картографирования свойств 
почвенного покрова равен 1:2 500. 
Методы исследований 

Для создания ортофотоплана участка (рис. 2) была проведена БПЛА-съемка. Модель 
БПЛА — DJI mini 2 (учетный номер РОСАВИАЦИИ 0u66296). Даты съемки — 22.06.2023 
и 12.09.2023 г. Высота съемки — 50 м. В связи с существующим законодательством в 
области мониторинга земель при помощи БПЛА для проведения съемки было получено 
разрешение Единой системы организации воздушного движения (ЕС ОрВД). Номера 
режима ВР 8534 и ВР 8744. Запрос временного режима осуществлялся через систему 
«Небосвод». Создание ортофотоплана и цифровой модели рельефа выполнялось в 
программе Agisoft Metashape Professional. 
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Рис. 1. Местоположение территории исследований 
Fig. 1. Location of the research area 

 
 

 
 

Рис. 2. Цифровой ортофотоплан участка исследований: а — 3D-вид (дата 22.06.2023),  
b — снимок от 12.09.2023 (открытая поверхность почвы),  

c — снимок от 22.06.2023 (период вегетации) 
Fig. 2. Digital orthophotoplane of the research area: a — 3D view (date 06.22.2023),  

b — snapshot from 09.12.2023 (open soil surface),  
c — snapshot from 06.22.2023 (growing season)  
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Пространственное разрешение созданных ортофотопланов составляет 10 см/пикс, 
являясь высокодетальным. По полученным материалам аэрофотосъемки сформировано 2 
набора предикторов1 агрохимических свойств почв: топографические и спектральные. 

Топографические предикторы созданы в результате цифрового моделирования 
рельефа методами фотограмметрической обработки аэрофотоснимка открытой поверх-
ности почвы от 12.09.2024. Общее число равно 13, которое включало: цифровая модель 
рельефа, метры (DEM), расстояние до дренажной сети (Channel Network Distance), индекс 
сходимости потоков (Convergence Index), индекс длины и крутизны склона (LS-Factor), 
плановая кривизна (Plan Curvature), Profile Curvature (профильная кривизна), Relative Slope 
Position (относительное положение на склоне), суммарная водосборная площадь (Total 
Catchment Area), глубина долины (Valley Depth), экспозиция (Aspect), уклоны, градусы 
(Slope), индекс топографического положения (TPI), топографический индекс влажности 
(TWI). Геоизображения некоторых топографических предикторов представлены на рис. 3. 

Рис. 3. Геоизображения топографических предикторов: а — цифровая модель  
рельефа; b — уклоны; с — экспозиция склонов; d — топографический индекс  
влажности и тальвеги; e — относительное положение на склоне; f — индекс 

топографического положения (1 — подножье склона, 2 — понижения,  
3 — ровный участок, 4 — прямой склон, 5 — средние части склонов,  

6 — верхние части склонов, 7 — перегибы слонов, 9 — гребневидные участки,  
10 — водораздельные пространства) 

Fig. 3. Geo-images of topographic predictors: a — DEM; b — slopes; c — slope exposure; 
d — topographic index of humidity and talvegi; e — relative position on the slope;  

f — index of topographic position (1 — foot of the slope, 2 — downgrades, 3 — flat area,  
4 — straight slope, 5 — average parts of the slopes, 6 — upper parts of the slopes,  

7 — elephant bends, 9 — ridge-like areas, 10 — watershed spaces) 

1 От англ. predictor; to predict — предсказывать, прогнозировать 
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Спектральные предикторы: отражение в синем, зеленом и красном каналах элек-
тромагнитного спектра, а также спектральные индексы: NGRDI [Hunt, 2005], GLI [Hunt, 
2013], VARI [Susantoro, 2018] вычисленные для двух дат аэрофотосъемки: вегетационный 
период (22.06.2023) и состояние открытой поверхности почвы (12.09.2023). Геоизобра-
жения спектральных индексов приведены на рис. 4. 

Полевые работы, помимо съемки с БПЛА, включали отбор индивидуальных поч-
венных проб из пахотного слоя почвы 0–20 см. Всего на территории участка было отобрано 
30 индивидуальных почвенных образцов. Места отбора образцов почв отмечены на рис. 1. 

Лабораторные методы включали определение содержания гумуса (ГОСТ 26213-
2021) и элементов питания: аммонийного азота (ГОСТ Р 53219-2008) и нитратного азота 
(ГОСТ 26951-86), подвижный фосфор (Р2О5, мг/кг) и обменный калий (К2О) по методу 
Кирсанова (ГОСТ Р 54650-2011). 

Рис. 4. Геоизображения спектральных предикторов: спектральные индексы  
открытой поверхности почв: а — NGRDI; b — GLI; с — VARI;  

спектральные индексы растительного покрова: d — NGRDI; e — GLI; f — VARI 
Fig. 4. Geo-images of spectral predictors: spectral indices of the open soil surface:  

a — NGRDI; b — GLI; c — VARI;  
spectral indices of vegetation cover: d — NGRDI; e — GLI; f — VARI 

Обработку пространственных данных выполняли в QGIS 3.34 (подготовка карто-
графической основы отбора индивидуальных почвенных проб, визуализация, оформление 
карт), SAGA GIS 9.2 (цифровое моделирование рельефа, корреляция растровых слоев) и 
ArcGIS 10.8, модуль Geostatistical Analyst (математико-картографическое моделирование 
пространственного распределения агрохимических свойств). 

Для пространственного моделирования с применением данных БПЛА использовался 
метод «Случайный лес» (Random Forest), реализованный с помощью библиотеки scikit-learn 
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в программной среде Python. Случайный лес представляет собой ансамблевый метод 
машинного обучения, основанный на построении множества решающих деревьев и агре-
гировании их предсказаний для повышения точности и устойчивости модели [Докучаев, 
2017]. В качестве обучающей выборки использовали таблицу, содержащую значения агро-
химических показателей в точках отбора образцов и соответствующие значения морфо-
метрических параметров рельефа. Объектом прогноза послужила таблица, включающая 
пространственную матрицу предикторов, в качестве которых использовали отобранные 
показатели, продемонстрировавшие наибольшую корреляцию с изучаемыми агрохимичес-
кими свойствами. 
 
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ 

В результате лабораторного анализа агрохимических показателей в почвенных 
образцах, установлено, что содержание гумуса варьирует от очень низкого (1,4 %) до 
низкого (3,5 %), обеспеченность почв фосфором и калием высокая и очень высокая 
(табл. 1). Данные по элементам питания (Р2О5 и К2О) не соответствуют нормальному 
распределению, поскольку среднее и медиана имеют значительную разность. По этой 
причине для корректного построения геостатистических поверхностей распределения по 
этим показателям проведено логарифмирование по методу нормальных меток. 
 

Табл. 1. Показатели вариационной статистики агрохимический свойств почв (n = 30) 
Table 1. Indicators of variation statistics agrochemical properties of soils (n = 30) 

 

Показатель Значения показателей Std. Dev.* 
мин. макс среднее медиана 

Гумус, % 1,4 3,5 2,3 2,1 0,65 
Nмин, мг/кг 4,1 45,9 17,9 13,5 13,66 
P2O5, мг/кг 204 572 345 305 119,62 
K2O, мг/кг 94 850 232 154 225,16 

 

*Std. Dev. — стандартное отклонение 
 

Результаты анализа пространственного распределения континуальных свойств поч-
венного покрова отражают графики тренда и вариограмм. Тренд-анализ (рис. 5) выявил 
выраженные закономерности распределения агрохимических свойств по направлениям 
восток-запад и север-юг. 

Содержание гумуса демонстрирует слабовыраженный тренд на увеличение в 
центральной части участка по оси X, при этом по направлению север-юг наблюдается 
незначительное снижение. Минеральный азот характеризуется отчетливым увеличением в 
южной и восточной частях территории, что указывает на влияние микрорельефа. Концен-
трация подвижного фосфора имеет максимум в западной части поля с тенденцией к сни-
жению к востоку и к югу. Распределение обменного калия также показывает локальное 
увеличение в северо-западной части, что может быть связано с его аккумуляцией в 
понижениях рельефа. В целом, выявленные тренды указывают на пространственную 
неоднородность свойств почв и подтверждают необходимость проведения детрендинга 
перед выполнением пространственной интерполяции. 

Построенные вариограммы (рис. 6) свидетельствуют о различной степени про-
странственной автокорреляции для исследованных агрохимических свойств почвенного 
покрова участка. 

Для гумуса наблюдается слабая пространственная зависимость: значения полудис-
персии (γ) растут с расстоянием, однако кривая модели достигает плато достаточно быстро, 
что указывает на ограниченное влияние пространственного фактора. Минеральный азот 
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проявляет наиболее выраженную автокорреляцию — с увеличением расстояния полу-
дисперсия (γ) возрастает значительно, особенно на первых 3–5 интервалах, что свиде-
тельствует о наличии четких пространственных структур в распределении этого элемента. 
Вариограмма для подвижного фосфора показывает умеренную пространственную зави-
симость с постепенным ростом значений γ, в то время как для обменного калия (K2O) 
пространственная структура практически отсутствует — значения полудисперсиии колеб-
лются вокруг константы, а кривая модели почти горизонтальна. Таким образом, минераль-
ный азот и подвижный фосфор характеризуются наибольшей степенью пространственной 
автокорреляции, тогда как гумус и особенно обменный калий имеют случайный характер 
распределения по участку. 

 
 

 
 

Рис. 5. Графики тренда агрохимических свойств почв: ось X — направление по долготе;  
ось Y — направление по широте; ось Z — значение агрохимического показателя  

(гумус, %; минеральный азот, мг/кг; Р2О5, мг/кг; К2О, мг/кг) 
Fig. 5. Trend charts of agrochemical properties of soils: X — axis is the longitude direction;  

Y — axis is the latitude direction; Z — axis is the value of the agrochemical  
indicator (humus, %; mineral nitrogen, mg/kg; P2O5, mg/kg; K2O, mg/kg) 

 
Подобраны оптимальные параметры создания геостатистических растров агрохи-

мических свойств почвенного покрова. При создании карт средствами модуля geostatistical 
analyst ArcGIS результаты перекрестной проверки показали наименьшие значения показа-
теля среднеквадратического отклонения (RMSE) у метода «обычный кригинг». В связи с 
этим данный метод применен для создания агрохимических картограмм. Сформированные 
геоизображения представлены на рис. 7. 

Для карты содержания гумуса использовали градацию из «Национального атласа 
почв», а для визуализации фосфора применена равноинтервальная классификация диапа-
зона значений. 
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Рис. 6. Вариограммы агрохимических свойств почв 
Fig. 6. Variograms of agrochemical properties of soils 

С целью отбора наиболее информативных предикторов для последующего машин-
ного обучения был проведен корреляционный анализ между агрохимическими показате-
лями и параметрами рельефа. Расчет коэффициентов корреляции выполнялся в SAGA GIS 
с использованием инструмента «Scatterplot» (график рассеяния). Этот инструмент позво-
ляет получить коэффициент детерминации для парных растровых слоев. Такой подход 
оказался информативным, поскольку позволяет предварительно выявить параметры, наи-
более тесно связанные с агрохимическими свойствами почвы, тем самым сузив набор 
входных переменных для построения прогностических моделей. Коэффициенты корре-
ляции агрохимических свойств с топографическими параметрами приведены в табл. 2. 
Установлено, что наиболее сильная отрицательная корреляция наблюдается между содер-
жанием минерального азота и абсолютной высотой (DEM) (r = −0,87), а также с отно-
сительным положением склона (Relative Slope Position) (r = −0,55), что указывает на 
накопление азота в нижних частях склона. Гумус положительно коррелирует с глубиной 
долины (Valley Depth) (r = 0,50) и имеет обратную корреляцию с положением на склоне 
(r = −0,42), что также подтверждает закономерности аккумуляции органического вещества. 
Для P2O5 и К2О определены средние коэффициенты корреляции с крутизной (Slope), 
расстоянием до дренажной сети (Channel Network Distance) и глубиной долины. Расчет 
корреляции растров дал возможность обоснованно выбрать набор предикторов, отражаю-
щих пространственную неоднородность факторов рельефа и оказывающих влияние на 
распределение почвенных свойств. 

Коэффициенты корреляции спектральных параметров со свойствами почвы значи-
тельно менее информативны по сравнению с топографическими. Однако следует отметить, 
что в вегетационный период по азоту и содержанию гумуса растры спектральных индексов 
имеют более тесную связь (особенно связь индекса VARI, которая стала выше в 33 р.), чем 
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открытая поверхность почвы, что указывает на важность растительного покрова как 
индикатора плодородия почв (табл. 3). 

Таким образом, в результате анализа, основанного на получении коэффициентов 
корреляции растровых карт определены следующие предикторы:  

• гумус: Relative Slope, Valley Depth; 
• минеральный азот: DEM, Channel Network Distance, Relative Slope Position, Valley 

Depth; 
• фосфор: Slope, Relative Slope Position; 
• калий: DEM, TPI. 

 

 
 

Рис. 7. Геоизображения агрохимических свойств, полученные методом  
«обычный кригинг»: a — гумус; b — Nмин; c — P2O5; d — K2O 

Fig. 7. Geo-images of agrochemical properties obtained by the “ordinary kriging”  
method: a — humus; b — Nmin; c — P2O5; d — K2O  
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Табл. 2. Коэффициенты корреляции Пирсона некоторых топографических 
предикторов с агрохимическими свойствами почвы 

Table 2. Pearson correlation coefficients of some topographic predictors  
with agrochemical properties of the soil 

Свойства 
почв 

Channel 
Network 
Distance 

LS- 
Factor 

Relative 
Slope 

Position 

Valley 
Depth DEM Aspect Slope TPI TWI 

Гумус 0,27 0,14 −0,42 0,50 0,17 −0,20 −0,17 −0,32 0,12 
Nмин −0,57 0,10 −0,55 0,60 −0,87 −0,42 −0,35 −0,53 −0,24 
Р2О5 0,37 0,39 0,45 −0,32 0,10 0,05 0,47 0,28 0,15 
К2О 0,19 0,20 0,24 0,32 −0,50 0,37 0,24 −0,41 0,07 

Обозначения: 
Channel Network Distance — расстояние до дренажной сети 
LS-Factor — индекс длины и крутизны склона 
Relative Slope Position — относительное положение на склоне 
Valley Depth — глубина долины 
DEM — абсолютная высота 
Aspect — экспозиция 
Slope — уклоны 
TPI — индекс топографического положения 
TWI — топографический индекс влажности 

Табл. 3. Коэффициенты корреляции Пирсона спектральных предикторов 
с агрохимическими свойствами почвы 

Table 3. Pearson correlation coefficients of spectral predictors  
with agrochemical properties of soil 

Свойства 
почв RED GREEN BLUE NGRDI GLI VARI 

Гумус −0,16/−0,04 −0,13/0,17 −0,09/−0,06 0,02/0,28 0,02/0,24 0,01/0,33 
Nмин 0,05/0,24 0,06/0,22 0,13/0,20 0,05/0,23 0,04/0,22 0,06/0,20 
Р2О5 0,08/0,03 0,06/0,05 −0,02/−0,02 0,05/−0,04 0,05/0,00 −0,04/−0,03 
К2О 0,03/0,17 0,00/0,20 0,06/0,10 −0,09/−0,08 −0,05/−0,07 −0,10/−0,05 

Примечание. В числителе — открытая поверхность почвы по снимку от 12.09, в знаменателе — 
растительный покров по снимку от 22.06 

Спектральные переменные в связи со слабой корреляцией использованы не были. 
В рамках моделирования с использованием алгоритма «Random Forest» в качестве 

входных предикторов, помимо данных о рельефе, дополнительно были использованы 
пространственно-интерполированные растры свойств почвы, полученные методом обыч-
ного кригинга. Такой подход основан на концепции spatial stacking [Sekulić, 2020], пред-
полагающей включение в модель предсказанных пространственных поверхностей как 
дополнительных признаков. Это позволяет учесть пространственную автокорреляцию и 
пространственные закономерности распределения агрохимических свойств, тем самым 
повышая точность и устойчивость модели. Использование геостатистических растров, 
полученных методом «обычный кригинг», как вспомогательных переменных способствует 
более полному описанию сложных взаимосвязей между факторами среды и почвенными 
параметрами, что особенно актуально в условиях неоднородных агроландшафтов. 

В результате пространственного моделирования на основе предикторов были сфор-
мированы карты агрохимических свойств почв в детальном м-бе 1:2 500 (рис. 8). 

Для сравнения с результатами геостатистического моделирования было проведено 
вычисление значений RMSE, получаемых в результате кросс-валидации (табл. 4). 
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Рис. 8. Пространственные модели агрохимических свойств почв, созданные 
методом Random Forest: a — гумус; b — Nмин; c — P2O5; d — K2O 

Fig. 8. Spatial models of agrochemical properties of soils created  
by the Random Forest method: a — humus; b — Nmin; c — P2O5; d — K2O 

Табл. 4. Значение RMSE по результатам кросс-валидации 
Table 4. RMSE value based on cross-validation results 

Метод Гумус, % Nмин, мг/кг Р2О5, мг/кг К2О, мг/кг 
Random Forest 0,14 8,3 28,1 61,9 
Ordinary Kriging 0,71 12,5 63,5 120,1 
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Результаты анализа свидетельствуют о том, что точность прогнозного картографи-
рования с использованием машинного обучения и данных БПЛА выше геостатистических 
поверхностей от 20 % (гумус) до 52 % (фосфор). В контексте практического применения, 
на примере данных по фосфору: площади почв, имеющие обеспеченность менее 200 мг/кг 
составляют 0,8 га, а на основе БПЛА-данных, обработанных методом машинного обучения, 
площадь равна 0,2 га. В данном примере полученные результаты позволяют сократить 
объемы фосфорных удобрений. 

ВЫВОДЫ 
Современные условия информационных технологий позволяют использовать в 

методике цифрового картографирования агрохимических свойств почвы данные БПЛА и 
машинное обучение (Random Forest). Установлено, что метод машинного обучения, на 
примере алгоритма Random Forest и с включением геостатистических переменных (растров 
топографических индексов и ЦМР, а также карт, полученных методом кригинга) позволяет 
достоверно повысить точность пространственного моделирования агрохимических 
показателей почвы по сравнению с традиционными методами интерполяции. Полученные 
значения RMSE при перекрестной валидации подтверждают эффективность такого 
подхода: улучшение прогноза составило от 20 % (для содержания гумуса) до 52 % (для 
содержания фосфора), что указывает на значимый вклад пространственных зависимостей и 
спектральной информации в точность предсказаний. С практической точки зрения 
полученные результаты демонстрируют потенциал применения БПЛА и алгоритмов 
машинного обучения в задачах агрохимического картографирования и оптимизации 
внесения удобрений, что было продемонстрировано на примере картографирования по-
движного фосфора. 
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