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ABSTRACT 
This study explores the use of Unmanned Aerial Vehicles “UAVs” and Remote Sensing 

“RS” data to assess the productivity of agricultural lands in various regions of Kazakhstan. 
The primary focus is on analyzing vegetation indicators such as the Normalized Difference 
Vegetation Index “NDVI” and their relationship with the agrochemical properties of the soil. 
A comparative analysis was performed between satellite multispectral imaging and UAV-based 
aerial photography to determine the most accurate methods for predicting spring barley yield. The 
integration of RS technologies with traditional agricultural methods has proven to reduce 
environmental impact, minimize soil degradation, and enhance the stability of agroecosystems. 
Field experiments took place in three different soil-climatic zones of Kazakhstan, with spring 
barley cultivated under controlled conditions. The study included multispectral imaging from 
Landsat-8–9 satellites and UAV-based multispectral imaging. The results indicate that differen-
tiated fertilization strategies, based on the spatial distribution of soil nutrients, contribute to 
increased crop productivity and reduced excessive nitrogen application. The findings of this study 
highlight that the implementation of precision agricultural technologies can significantly improve 
yield prediction accuracy and resource efficiency. Moreover, integrating UAV-based monitoring 
with GIS mapping enables real-time decision-making in farm management. These approaches 
promote sustainable agricultural practices by reducing soil degradation and enhancing long-term 
productivity through environmentally friendly farming methods. The results of this study are 
applicable to the development of sustainable agricultural strategies aimed at enhancing 
productivity while conserving natural resources, thereby ensuring long-term food security and 
environmental stability. 
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INTRODUCTION 
With the advancement of remote sensing and satellite monitoring technologies, and the 

growing availability of satellite imagery worldwide, precision agriculture systems are increasingly 
being adopted in agricultural practices [Toguzova et al., 2022]. The main goal of precision agriculture 
in crop production is to maximize productivity and financial returns while minimizing costs and 
environmental impact [Beluhova-Uzunova, Dunchev, 2019]. Its scientific foundation is based on the 
concept of intra-field variability [Kulyasov et al., 2020]. Heterogeneous soil layers within cultivated 
fields can lead to inconsistent yield potential under uniform management. Identifying such areas 
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enables reduced treatment zones, optimized fertilizer use, and lower average production costs, while 
improving overall productivity [Korchagin et al., 2021; Apshikur et al., 2024]. 

Currently, the application of precision agriculture methods in the agricultural sector serves 
as one of the key approaches for increasing productivity, optimizing resource use, and assessing 
the level of geoecological contamination in cultivated lands within industrial regions, such as the 
areas studied in this research [Apshikur et al., 2024]. Furthermore, these methods play a crucial 
role in planning measures to mitigate such contamination. Precision agriculture integrates modern 
technologies in crop production, including Remote Sensing and the use of Unmanned Aerial 
Vehicles “UAVs” [Cao et al., 2023]. Compared to ground-based and satellite monitoring methods, 
UAV-derived data are distinguished by higher accuracy, enabling rapid assessment of the 
condition of agricultural fields [Phang et al., 2023]. 

Currently, remote sensing “RS” data are being increasingly utilized in various critical 
sectors of the national economy, including the monitoring of vegetation cycles across vast 
agricultural territories [Erunova et al., 2021], early prediction of forest fires [Asangaliyev et al., 
2024], forecasting flood risks and assessing their consequences [Apshikur et al., 2023], evaluating 
the environmental impact of waste dumps from mineral extraction and delineating their spread 
[Ryzhkov et al., 2021], as well as optimizing urban traffic management and obtaining real-time 
information on traffic congestion [Abedzhanova et al., 2023]. Moreover, in emergency situations, 
data obtained from various types of “UAVs” are increasingly being integrated into these 
applications. 

The increasing number of orbiting satellites, along with their multifunctional spectral 
channels (e. g., the Landsat-8–9 OLI-TIRS and Sentinel-1–2 series), provides valuable real-time 
satellite data. The availability of open-access satellite archives facilitates effective agricultural 
management. Moreover, these data enable the identification of chemical pollutants leaching from 
agricultural fields along riverbanks into water bodies. They also support the development of 
mitigation strategies [Apshikur et al., 2025]. In developed European countries, new approaches 
and strategies based on remote sensing techniques from ground-based, aerial, and satellite plat-
forms for detecting weed infestations are widely implemented [Huang et al., 2018]. 

Aerial and space borne platforms serve as primary tools for acquiring “RS” data in 
addressing environmental and agricultural challenges. However, such data sources have several 
significant limitations. The most critical among them include the high cost of imagery, the 
restricted ability to obtain images within short timeframes and at the required frequency, the 
necessity for image interpretation, and errors induced by weather conditions, cloud cover, and fog. 

Over the past decade, research on the use of drones in precision agriculture has increased 
tenfold. Today, various types of Unmanned Aerial Vehicles play a crucial role in providing high-
quality remote sensing data at the necessary scale and within the required timeframe, effectively 
addressing the need for rapid and localized information acquisition [Jindo et al., 2021]. 

This study aims to evaluate the accuracy of methods utilizing UAV and remote sensing 
(RS) data for assessing crop productivity in agricultural lands across different regions of Kazakh-
stan. The primary objective is to determine the effectiveness of precision agriculture technologies 
by integrating satellite imagery, UAV-based high-resolution data, and geospatial tools for crop 
yield monitoring and management. 

In the context of this study, the term “agricultural productivity assessment” refers to the 
evaluation of vegetation condition and potential yield using remote sensing-derived vegetation 
indices, primarily the Normalized Difference Vegetation Index (NDVI). NDVI served as a proxy 
for biomass density, photosynthetic activity, and crop health throughout the growing season. 
Productivity was assessed spatially by overlaying NDVI maps with interpolated soil nutrient data 
to identify low-performing zones and inform differential fertilizer application. 
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The study also aims to delineate the spatial boundaries of soil degradation using automated 
soil sampling, optimize variable-rate fertilization, and implement yield mapping techniques. 
Various vegetation indices, such as NDVI, EVI, and GNDVI [Jinru et al., 2017], were analyzed 
for their correlation with crop yield indicators. The advantages and limitations of each method 
were evaluated based on experimental data and high-resolution imagery obtained from both UAV 
and satellite platforms. 

The research findings presented in this article result from the work conducted by the team 
of authors within the framework of the Scientific and Technical Program and Targeted Funding 
Project of the Ministry of Agriculture of the Republic of Kazakhstan for 2020–2023. 

The results of the study contribute to the advancement of remote monitoring techniques in 
agriculture [Lebrini et al., 2020], enabling farmers and agronomists to make accurate and effective 
decisions. Furthermore, the obtained data highlight the importance of integrating digital techno-
logies into the agricultural sector and support the future development of precision farming systems. 
 
RESEARCH MATERIALS AND METHODS 

As the subject of the study, the cultivation of spring barley was examined in three regions 
of Kazakhstan’s agricultural lands. Spring barley has a relatively short active period for nutrient 
uptake from the soil [Sadenova et al., 2022]. According to statistical calculations, the production 
of 1 ton of grain requires approximately 30 kg of nitrogen, up to 10 kg of phosphorus, and more 
than 27 kg of potassium. Therefore, fertilizers play a crucial role in enhancing plant growth and 
yield, as well as in preventing the natural depletion of soil resources. 

Ground-based monitoring experiments were conducted at selected test sites, including 
Field 1 of Farm E, Field 2 of Farm N, and Field 3 of Farm M (Fig. 1). 
 

 
 

Fig. 1. Administrative division of Kazakhstan and the location  
of experimental sites (No. 1–3) 
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The studied fields for spring barley cultivation are located in different zonal regions and 
fall into distinct belt-specific categories. 

Each field (Polygon 1–3) has an approximate area of 45 ha. These measurements were 
obtained using GPS-based field boundary mapping and confirmed using spatial analysis tools in 
QGIS, ensuring accuracy for further agrochemical mapping and UAV flight planning. 

In general, Polygons 1–2 are located in a dry steppe zone and feature black and dark 
chestnut soils. In contrast, Polygon 3 comprises deep carbonate, weakly humus sandy and loamy 
sandy chestnut soils, as well as underdeveloped chestnut soils [Yapiyev et al., 2018]. 

The research process began with monitoring the spring fieldwork conducted in each 
polygon. For Polygon 1, spring barley seeds of the Elek-16 variety were sown in the first decade 
of May 2022 at an average seeding rate of 180 kg/ha and harvested at the end of July 2022 with a 
yield of 17.0 c/ha [Górski et al., 2023]. No mineral fertilizers were applied to the soil in the study 
area. Spring barley crops were treated with herbicides against weeds and pests [Bakaeva et al., 
2024]. 

In Polygon 2, spring barley seeds of the Elek-16 variety were sown in the first decade of 
May 2022 at an average seeding rate of 180 kg/ ha and harvested at the end of August 2022 with 
a yield of 6.0 c/ha. No mineral fertilizers were applied to the study area. 

Farmers applied herbicides to spring barley crops to control weeds and pests. In Polygon 3, 
farmers sowed spring barley seeds of the “Belcanta” variety in the first decade of May 2022 at an 
average seeding rate of 180 kg/ ha and harvested them at the end of August 2022, with a yield of 
9 c/ha. 

The study area involved the application of both primary and specialized mineral fertilizers 
[Deikun et al., 2022]. “Nitroammophoska” served as the primary fertilizer at a dosage of 250 kg/ha. 
Farmers applied herbicides to spring barley crops to control weeds and pests [Vlasenko et al., 
2011]. 

During soil sampling, it was necessary to take into account various factors such as non-
uniform soil cover, terrain features, climatic conditions, and vertical zonal structure. To analyze 
the agrochemical composition of soil fertility, researchers collected samples from the arable layer 
at a depth of 0–0.30 m [Yang et al., 2022]. 

The initial stage of the field study involved the creation of a high-precision digital field 
contour (map) using a GPS receiver (Fig. 2a). The GPS data collected from the field boundaries 
were imported into QGIS software (v. 3.38.0), where vector shapefiles were generated. These 
shapefiles served as base maps for further spatial analysis and mapping. Agrochemical maps were 
developed by interpolating laboratory soil test results (humus, nitrogen, potassium, phosphorus) 
using the Inverse Distance Weighting (IDW) method in QGIS, providing spatial distribution of 
soil nutrients across the plots. Following this, the plowing area was divided into ten 100 m² squares 
using a specialized tablet equipped with the Exact Farm application (Fig. 2b). Researchers 
designated the center of each square as a sampling point for soil collection [Huuskonen, Oksanen, 
2018; Gonçalves et al., 2021]. Researchers collected soil samples from the designated locations 
determined by the GPS-enabled tablet using the “WINTEX 1000S” soil sampler, which can be 
attached to any agricultural machinery (Fig. 2c). The key advantage of this method is that the 
coordinates of each sampling point are stored in the tablet, enhancing the reliability of statistical 
data on soil changes in subsequent years after fertilizer application. 

Composite soil samples were collected from experimental plots using the diagonal “enve-
lope” method. Each composite consisted of 10 subsamples per plot. The samples were analyzed in 
the accredited “Veritas” laboratory at D. Serikbayev East Kazakhstan Technical University. 

Based on the lab results, agrochemical maps were generated in QGIS, reflecting key soil 
parameters such as humus, exchangeable nitrogen, potassium oxide (K₂O), sodium (Na), calcium 
(Ca), phosphorus pentoxide (P₂O₅), and others [Hoffland et al., 2020]. 
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Fig. 2. Soil sampling in the polygon fields: (a) sampling methods, 
(b) GPS tablet, (c) Wintex 1000S soil sampler 

Productivity indices were also determined for each vegetation period using satellite ima-
gery (Landsat 8–9 OLI/TIRS, Sentinel-2). To validate these data, aerial surveys were carried out 
using the DJI Phantom 4 Multispectral UAV with D-RTK2 for precision agriculture (Fig. 3a). 

Fig. 3. Unmanned aerial vehicle (UAV) system: a) DJI Phantom and preparation process; 
b) multispectral camera; c) mobile station D-RTK2

The DJI Phantom 4 Multispectral “P4M” is a compact quadcopter designed for aerial 
multispectral imaging (Fig. 3b). It is an ideal solution for agricultural applications and comes 
equipped with the D-RTK 2 High Precision GNSS mobile station. The camera is equipped with 
six sensors, each capturing different spectral dimensions (Fig. 3c). 

Multispectral images are processed using specialized agricultural software that extracts 
critical data in our case, “Agisoft Metashape”.1 Agisoft LLC, headquartered in St. Petersburg, 
Russia, developed the software. This technology enables the generation of geospatial telemetry, 
soil, and crop data, allowing producers to efficiently manage and plan farm operations. It facilitates 
cost and time saving while optimizing resource use, reducing pesticide application, and enhancing 
overall farm management. 

1 Agisoft LLC. Wikipedia. Web resource: https://en.wikipedia.org/wiki/Agisoft_LLC (accessed 20.02.2025) 
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As outlined above, researchers analyzed satellite data for each vegetation period and 
captured UAV imagery to determine yield assessment indices after implementing yield improve-
ment measures in cultivated fields. Vegetation indices are composed of reflectance measurements 
at two or more wavelengths to analyze specific plant characteristics, such as total leaf area and 
water content. More than 150 vegetation indices have been published in the scientific literature1, 
however, only a small number of them have a significant biophysical foundation or have 
undergone systematic validation. The most widely used vegetation index is NDVI “Normalized 
Difference Vegetation Index”, while NDRE “Normalized Difference Red Edge” is also frequently 
used, especially since detection with a Sentera sensor equipped with an additional NDRE filter 
provides more comprehensive data [Boiarskii, Hasegawa, 2019]. 

RESEARCH RESULTS AND DISCUSSION 
To determine the agrochemical properties of the soil and calculate fertilizer application 

rates, an agrochemical study was performed on the soil of experimental plots 1–3, considering the 
current years chemical analysis data on the mobile forms of nutrients [Surinov, 2023]. 
The primary components of soil fertility were determined in the three studied polygons (Table 1). 

The analysis included humus content (percentage), soil acidity (pH), total sulfur (S total, 
%), and mobile sulfur (S mobile, mg/kg). Additionally, total nitrogen (N total, %), total nitrogen 
content (N total, mg/kg), and total nitrogen per 100 g of soil (N total, mg/100 g of soil) were 
measured. The study also determined mobile potassium (K₂O, mg/kg), mobile potassium per 100 g 
of soil (K₂O, mg/100 g of soil), mobile phosphorus (P₂O₅, mg/kg), and mobile phosphorus per 
100 g of soil (P₂O₅, mg/100 g of soil). Furthermore, heavy metal concentrations were assessed, 
including lead (Pb, mg/kg), iron (Fe, mg/kg), copper (Cu, mg/kg), zinc (Zn, mg/kg), nickel (Ni, 
mg/kg), manganese (Mn, mg/kg), calcium (Ca, mg/kg), magnesium (Mg, mg/kg), and chromium 
(Cr, mg/kg) [Muraru et al., 2021]. The key indicators constituting the main components of soil 
fertility were determined separately for each of the three studied polygons. 

Based on the research results, agrochemical maps displaying the levels of mobile nutrients 
were prepared. Considering the publications space limitations, this article presents fragments of 
the maps for Polygon 1 (Fig. 4). 

Based on the results of the agrochemical analysis, the humus content in the examined plots 
of Polygon 1 the study determined to range from 4.06 to 5.32 %, indicating that the soil is rich in 
organic matter. The pH level of the soil solution varied between 6.68 and 8.04, spanning from 
slightly acidic to mildly alkaline conditions. The total nitrogen (N total) content ranged from 2 156 
to 3 108 mg/kg, while the total nitrogen content per 100 g of soil varied from 215.6 to 
310.8 mg/100 g, suggesting that the studied soils contain a sufficient amount of nitrogen. The 
concentration of mobile phosphorus (P₂O₅) ranged from 54.40 to 66.80 mg/kg, whereas the mobile 
potassium (K₂O) content was determined to be between 354 and 396 mg/kg. The phosphorus 
content per 100 g of soil the study determined to range from 5.44 to 6.68 mg/100 g, while the 
potassium content varied between 35.4 and 39.6 mg/100g [Lukin, 2017]. 

These data indicate that the studied soils are moderately to highly supplied with potassium 
and phosphorus. Based on the high natural humus content in the soil, the conducted studies estimated 
that, considering the additional yield, the nutrient uptake by crops in the current year, under favorable 
weather and climatic conditions, allows for obtaining 17.0 c/ha of spring barley yield. 

Similarly, according to the agrochemical analysis results, the humus content in the soil of 
Polygon 2 the study determined to range from 3.50 to 5.50 %. The pH value of the soil solution 
varied between 5.59 and 7.51, indicating a reaction from slightly acidic to neutral. The total 

1 Vegetation index. Wikipedia. Web resource: https://en.wikipedia.org/wiki/Vegetation_index (accessed 
01.03.2025) 
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nitrogen (N total) content ranged from 2 044 to 2 772 mg/kg, suggesting that the studied soils 
contain a sufficient amount of nitrogen. 

Table 1. Laboratory Agrochemical Indicators of the Soil 

Soil 
sample 

No. 

Contents 

Humus, 
% 

рН, 
Aqueous 

S Mobile, 
mg/kg 

N total, 
mg/kg 

N total, 
mg/100 g 

of soil 

К2О, 
mg/kg 

К2О, 
mg/100 g 

of soil 

Р2О5, 
mg/kg 

Р2О5, 
mg/100 g 

of soil 
(polygon 1) 

А1 4,39 8,04 27,92 2604 260,4 384 38,4 62,03 6,20 
А2 4,41 7,93 28,24 2240 224 362 36,2 59,17 5,92 
А3 4,27 7,85 31,55 2156 215,6 354 35,4 56,30 5,63 
А4 4,58 6,68 28,64 2604 260,4 378 37,8 61,08 6,11 
А5 4,72 7,05 31,58 2800 280 366 36,6 54,40 5,44 
А6 4,37 6,95 32,97 2296 229,6 390 39,0 59,17 5,92 
А7 5,32 7,16 31,5 3108 310,8 396 39,6 62,98 6,30 
А8 4,06 8,02 33,21 2324 232,4 362 36,2 66,80 6,68 
А9 4,19 8,01 33,53 2464 246,4 374 37,4 66,80 6,68 

(polygon 2) 
А1 3,50 7,51 25,38 2100 210,0 386 38,64 125,1 12,50 
А2 3,85 6,28 29,34 2100 210,0 390 39,09 93,4 9,34 
А3 3,96 6,62 19,17 2380 238,0 425 42,50 102,2 10,22 
А4 5,50 5,59 22,79 2744 274,4 490 49,09 86,3 8,63 
А5 4,81 6,84 32,21 2772 277,2 384 38,41 70,5 7,05 
А6 4,00 6,56 30,33 2044 204,4 406 40,68 107,5 10,75 
А7 4,49 6,71 28,08 2520 252,0 445 44,55 100,4 10,04 
А8 3,85 6,21 26,64 2268 226,8 436 43,64 105,7 10,57 
А9 3,78 6,30 27,42 2100 210,0 393 39,32 75,8 7,58 

(polygon 3) 
А1 1,35 7,48 16,35 924 92,40 269 26,91 90,1 9,01 
А2 1,1 7,19 14,82 728 72,80 290 29,09 91,6 9,16 
А3 0,86 6,95 12,72 560 56,00 261 26,18 91,6 9,16 
А4 0,99 6,71 11,7 336 33,60 300 30,00 53,4 5,34 
А5 0,91 7,04 11,96 560 56,00 274 27,45 90,1 9,01 
А6 0,78 7,03 11,64 588 58,80 256 25,64 88,6 8,86 
А7 0,96 7,02 9,6 672 67,20 296 29,64 91,6 9,16 
А8 0,78 7,17 8,15 336 33,60 281 28,18 76,3 7,63 
А9 1,42 6,89 8,85 588 58,80 300 30,00 94,7 9,47 

The amount of available phosphorus (P₂O₅) ranged from 70.47 to 125.09 mg/kg, while the 
amount of available potassium (K₂O) varied between 384.09 and 490.91 mg/kg. These values 
indicate that the studied soils are highly supplied with potassium and moderately supplied with 
phosphorus. Additionally, the studied sites exhibited an uneven spatial distribution of mobile 
nutrients, highlighting the need for site-specific fertilizer application [Petukhov et al., 2021]. 

Similar studies conducted on Polygon 3 revealed that the humus content in the soil ranged 
from 0.78 to 1.49 %, indicating that the nutrient supply is insufficient for obtaining 1 ton of the 
main product through agricultural management [Gurov et al., 2019]. 

Researchers recommend using “Nitroammophoska” as a mineral fertilizer when determi-
ning fertilizer application rates and estimating the projected yield of spring barley under irrigated 
conditions. Its physical mass can reach up to 400 kg, while in terms of active ingredients per 
100 kg of fertilizer; it contains 12 % nitrogen, 12 % phosphorus, and 12 % potassium, along with 
up to 6 % sulfur, which fully aligns with the application rates for spring barley under irrigation. 
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A soil map was created using QGIS software based on the agrochemical analysis of soil from the 
three experimental polygons, and a fragment of the maps for Polygon 1 is presented in this article 
(Fig. 4). 
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Fig. 4. Cartogram of the distribution of agrochemical indicators in the soil 
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For non-irrigated “rainfed” lands, researchers apply different criteria to estimate the pro-
jected yield of spring barley. Specifically, when the expected yield under irrigated conditions is 
20 c/ha, the required nutrient amounts amount to 48 kg of nitrogen, 48 kg of phosphorus, and 48 kg 
of potassium in terms of active ingredients. Based on the study results, the actual obtained yield 
of spring barley was 9 c/ha. 

The peculiarity of using information technologies in agriculture is that almost all the data 
utilized have a spatial (geographical) connection [Zolkin et al., 2021]. The processing of such data 
is performed exclusively through specialized software designed to work with spatial information, 
among which Geographic Information Systems “GIS” play a crucial role. 

Various vegetation indices serve to assess the productivity of crop plants [Kurbanov et al., 
2020]. According to the research of scientists, the following types of indices are applicable to 
determine the condition of crop plants: GRRI, GBRI, RBRI, NDYI, RVI, NDVI, MTVI, EVI, 
MSAVI, and TCARI. In the process of identifying and analyzing vegetation indices, data obtained 
from Landsat-8–9 OLI remote sensing and DJI Phantom 4 RTK UAV systems are utilized [Ganie, 
Nusrath, 2016; Pan et al., 2023]. The data is obtained over a specific period, and a comparative 
analysis between them is conducted. This approach enables the assessment of vegetation 
conditions, prediction of crop yields, and planning of agrotechnical measures. 

Among the indices mentioned above, the NDVI “Normalized Difference Vegetation 
Index” is widely used to determine the overall condition of plants, the density of green biomass, 
and photosynthetic activity. In our study, we performed the differentiation using the NDVI index 
[Huang et al., 2021]. We calculate this index using the following formula (1): 

NDVI = (NIR − R) (NIR + R) (1), 

where NIR refers to the Near Infrared spectral band, and R refers to the Red spectral band. 
In figures 5a, 6a, and 7a the NDVI values, calculated based on the processing of Landsat-

8–9 OLI/TIRS C2 L2 satellite images obtained from the EO Browser open-access platform, are 
presented for different vegetation periods.  

In addition, we present the NDVI values obtained from images taken by the DJI Phantom 
4 RTK multispectral unmanned aerial vehicle at an altitude of 100 m during the same periods as 
those from the satellite (Fig. 5b, 6b, 7b). 

The spatial resolution of the images obtained through the UAV is 5.4 cm (focal length — 
5.74 mm, speed — 7.5 m/s, horizontal overlap — 90 %, longitudinal overlap — 80 %). 

The results of the study indicate that, depending on the data source, the average NDVI 
value for May for the first polygon was as follows: 0.16 based on satellite images (Fig. 5a) and 
0.20 based on UAV data (Fig. 5b). Based on the analysis of UAV and satellite image data, the 
Pearson correlation coefficient was calculated as r = 0.98, which demonstrates a high correlation. 

Further, for the second polygon in May, the average “NDVI” value was as follows: 0.20 
based on satellite images (Fig. 6a) and 0.32 based on “UAV” data (Fig. 6b). Based on the analysis 
of UAV and satellite image data, the Pearson correlation coefficient was calculated as r = 0.87, 
which also demonstrates a high correlation.  

To ensure consistency and improve visual interpretation, all NDVI maps (Figures 5b, 6b, 
7b, and 8) were standardized using a unified color legend ranging from 0.0 (low vegetation index) 
to 1.0 (high vegetation index). Green tones indicate areas of dense and healthy vegetation, while 
yellow to red tones represent sparse or stressed vegetation. 

In addition, the field boundaries for Polygons 1–3 were delineated and overlaid on each 
NDVI map to clearly indicate the spatial extent of each experimental area. This allows for precise 
visual correlation between NDVI changes and specific fertilized or control zones within the fields. 
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Fig. 5. NDVI values calculated based on: a) satellite data; b) UAV data (polygon 1, 14.05.22) 

Fig. 6. NDVI values for polygon 2 on 25.05.22: a) processed NDVI image 
based on satellite data; b) processed NDVI image based on UAV data 

And, for the third polygon in May, the average NDVI value was as follows: 0.27 based on 
satellite images (Fig. 7a) and 0.29 based on UAV data (Fig. 7b). Based on the analysis of “UAV” 
and satellite image data “RS”, the Pearson correlation coefficient was calculated as r = 0.98 (high 
correlation). 

Based on the study results, differential fertilizer doses were determined and applied to field 
polygons with macronutrient deficiencies [Michaud et al., 2020; Shiwakoti et al., 2020] (Table 2). 
Fertilizer rates were calculated by integrating NDVI data from UAV imagery with spatial 
agrochemical indicators derived from soil samples (0–30 cm depth). The analysis focused on 
nitrogen (N), phosphorus (P₂O₅), and potassium (K₂O) content. 

Agrochemical maps were created in QGIS using interpolated laboratory results, and NDVI 
maps were generated from multispectral UAV imagery captured during early barley growth. 
Overlaying these datasets enabled the identification of underperforming zones with NDVI < 0.3 
and nitrogen < 2 300 mg/kg. These zones received a uniform dose of 12 kg/ha, of 
N-P-K (Nitroammophoska), while control plots in the same fields remained unfertilized. 

For example, in Polygon 1, several 5-ha plots with low NDVI and nitrogen levels were 
fertilized. The same approach was applied in Polygons 2–3, adjusted for local nutrient profiles. 
UAV and GIS integration ensured precise, site-specific application. 

A 15–20 % increase in NDVI was observed in treated plots compared to controls, based on 
monthly UAV monitoring. NDVI values rose from ~0.20 to 0.55–0.64 in fertilized plots, while 
control plots remained at ~0.19–0.22. This improvement, strongly correlated with crop biomass in 
prior studies, served as a proxy for yield increase. The consistent pattern across all polygons 
supports the effectiveness of differential fertilization guided by UAV and GIS technologies. 
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Fig. 7. NDVI values for polygon 3 on 25.05.2022: a) processed NDVI image 
based on satellite data; b) processed NDVI image based on UAV data 

Table 2. Effect of mineral fertilizers on spring barley yield under conditions 
of high soil phosphorus and potassium availability 

Variant Fertilizer composition,  
active substance (kg/ha) 

Irrigated 
yield (с/ha) 

Rainfed 
yield (с/ha) 

N0P0K0 Control 6,0 3,5 
Nitroammophoska, N12P12K12 12 kg/ha N.P.K 9,0 3,5 

To evaluate fertilizer effectiveness [Tucher et al., 2018], Landsat-8–9 OLI satellite imagery 
was analyzed one month after application during the spring barley growing season (Fig. 8a–8c). 
In Polygon 1 (Fig. 8a), NDVI increased from 0.13 to 0.21 compared to the initial stage, with post-
treatment values ranging from 0.55 to 0.64, indicating enhanced vegetation vigor. 

Initially, NDVI values in both treated and control plots were similar. However, UAV-based 
monitoring [Grados, Schrevens, 2023] showed that in treated areas (points 1, 2, 4, 5, 7, 8), NDVI 
rose to 0.55–0.64, while control areas remained around 0.19, confirming the treatment effect. 

In Polygon 2 (Fig. 8b), NDVI initially ranged from 0.10 to 0.13. One month after applying 
differentiated fertilizer doses, values increased to 0.52. This improvement under chernozem soil 
conditions indicates favorable growth dynamics and high yield potential. 

In Polygon 3, during the first vegetation period, the NDVI growth intensity of spring barley 
ranged from 0.08 to 0.18. After adjusting the composition of the applied fertilizers 
(macroelements) based on the coordinates of the determined soil sample, an increase in NDVI 
growth intensity from 0.18 to 0.62 was observed over a 25-day growth period (Fig. 8c). 

Fig. 8. NDVI values derived from Landsat-8–9 OLI satellite imagery one month after 
fertilizer application: a) polygon No. 1; b) polygon No. 2; c) polygon No. 3 
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During the study conducted on Polygons 1–3, intra-field variability during the vegetation 
period appeared in nearly all agricultural fields. This, in turn, provides evidence that the initial 
results in developing the fundamental formula for spring barley cultivation emerged on sandy-
chestnut soils and non-irrigated arable lands. 

The results demonstrated a significant correlation (r = 0.98) between NDVI data obtained 
from satellites and data collected using UAVs [Fan, 2023]. The analysis showed that UAVs enable 
the rapid assessment of crop conditions and the adjustment of fertilization strategies. On the 
experimental plots, NDVI increased by 15–20 % after fertilizer application. In this study, the 
NDVI (Normalized Difference Vegetation Index) served as the primary indicator of crop produc-
tivity. Higher NDVI values were interpreted as indicators of healthier, denser green biomass, and 
thus greater expected yield. The 15–20 % increase in NDVI was therefore used as a proxy for yield 
improvement following fertilization. 

While Fig. 5–7 present NDVI distributions within individual fields using UAV data, Fig. 8 
summarizes the treatment effect across the three polygons using satellite-based NDVI 
measurements (Landsat-8–9 OLI). To ensure consistency in interpretation, all NDVI maps 
(including Fig. 8) were harmonized to use a standardized color legend (range: 0.0 to 1.0). 

Field boundaries and treatment/control zones were also delineated to facilitate visual 
comparison. Although the data sources differ (UAV vs. satellite), the comparative NDVI dynamics 
clearly demonstrate the effectiveness of site-specific fertilization methods applied in this study. 

CONCLUSIONS 
This study demonstrated the effectiveness of integrating Unmanned Aerial Vehicles 

(UAVs), remote sensing (RS), and Geographic Information Systems (GIS) technologies for 
assessing agricultural productivity and optimizing fertilizer application in various soil-climatic 
zones of Kazakhstan. By combining high-resolution UAV multispectral imagery with laboratory-
based agrochemical soil data, researchers were able to generate spatially explicit fertilization 
schemes tailored to field-specific conditions. 

The NDVI index served as the primary indicator for evaluating crop health and estimating 
yield potential. Monthly UAV monitoring revealed a consistent 15–20 % increase in NDVI values 
in fertilized plots compared to control plots without fertilization. This increase was used as a proxy 
for yield improvement and confirmed the impact of site-specific nutrient management. 

Unlike prior studies relying solely on satellite imagery, this research introduced a layered 
spatial analysis by linking NDVI maps directly to interpolated agrochemical indicators in QGIS. 
This methodology enabled a localized understanding of nutrient variability and informed precise 
fertilizer allocation at the sub-field level. 

The scientific novelty of this approach lies in its operational integration of UAV and GIS 
tools for differential fertilization across diverse agroecological settings. Though the experiments 
were conducted on three fields, the techniques and workflows demonstrated here are scalable and 
transferable to other regions with similar environmental conditions. 

Overall, the results highlight the strong potential of precision agriculture to enhance 
productivity, reduce excessive fertilizer use, and support sustainable land management. The 
adoption of these digital technologies presents a viable pathway for modernizing Kazakhstan’s 
agricultural sector while minimizing its environmental footprint. 
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