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АННОТАЦИЯ 

Работа посвящена использованию нейросетевого подхода для решения задачи 
классификации разновозрастных вырубок дистанционными методами. В основу иссле-
дования легли результаты натурных обследований территории и космические снимки 
среднего пространственного разрешения со спутника Landsat-8. В отличие от технологии 
эталонного дешифрирования, классификация типов вторичных лесов (на месте разно-
возрастных рубок) задавалась в процедуре совместной классификации данных полевых 
наблюдений и космической съемки. Классификация выполнялась в два приема. Сначала 
методом k-средних было установлено число кластеров с минимальной внутрикластерной 
дисперсией, затем методом Варда были выделены 4 кластера, объединяющие сходные 
биотопы, а именно свежие вырубки, зарастающие вырубки, жердняки и молодой листвен-
ный лес. Оказалось, что тип биотопа и возраст вырубки не имеют однозначной зависимости. 
Выделенные биотопы послужили основой для построения нейронной сети, выполняющей 
распознавание этих типов леса на космическом снимке. Для обучения нейросетевой модели 
использовали 2/3 исходных данных (80 точек из 120 точек описаний), для тестирования — 
1/3. Меняя число нейронов и слоев персептрона, мы старались добиться одинаковой 
ошибки на обучающей и тестовой выборках. В двух слоях (по 25 и 15 нейронов) искомые 
ошибки выровнялись и составили более 80 %. В результате использования сети для всей 
изучаемой территории был рассчитан растровый грид с 5 зонами и «белыми пятнами». Все 
расчеты и картографические построения велись в среде программы R (пакет terra), а 
нейронная сеть создавалась в пакете Keras, ранее не использовавшемся в этой области. 
Полученная карта, как характеристика экологических факторов, будет  использована при 
изучении популяций животных и их паразитов. 
 
КЛЮЧЕВЫЕ СЛОВА: вторичные леса, местообитания, дистанционное зондирование, 
нейронная сеть, Keras 
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ANIMAL HABITAT INTERPRETATION WITH KERAS LIBRARY  
DEEP LEARNING METHODS 

ABSTRACT 
This work focuses on the use of neural network-based approaches for the purposes of 

classifying clear-cut areas of different ages using remote sensing methods. This study is based on 
the field survey results conducted in the territory and medium spatial resolution images from the 
Landsat-8 satellite. Unlike the reference decoding technology, the classification of secondary forest 
types (at the site of clear-cut areas of different ages) was assigned in the procedure for joint 
classification of field observations and satellite imagery data. The classification was performed in 
two steps. First, the k-means method was used to determine the number of clusters with minimal 
intra-cluster variance. Then, the Ward method was applied to identify four clusters representing 
similar biotopes, namely, fresh clearings, overgrown clearings, pole-stage stands, and young 
deciduous forest. No clear correlation was found between biotope type and the age of the clear-cut 
areas. The identified biotopes served as the basis for building a neural network that recognizes these 
forest types in satellite imagery. To train the neural network model, we used two-thirds of the original 
data (80 points out of 120 points of descriptions), and one-third for testing. By changing the number 
of neurons and perceptron layers, we tried to achieve the same error on the training and test samples. 
In two layers of 25 and 15 neurons each, the required errors equalized amounting to over 80 %. As 
a result of using the network, a raster grid with five zones and “white denote” was calculated for the 
entire study area. All computations and cartographic design were carried out in the R programming 
environment (terra package), while the neural network was developed using the Keras package, 
which had not been previously used in this area. The resulting map, characterizing environmental 
factors, will be used in the study of animal populations and their parasites. 
 
KEYWORDS: secondary forests, habitats, remote sensing, neural network, Keras 
 
ВВЕДЕНИЕ 

Распространение и численность наземных позвоночных животных во многом  
определяется структурой мест обитания. Наши многолетние исследования в Карелии 
показывают, что рубки в тайге, ведущие к появлению целого ряда вторичных лесов со 
своими специфическими условиями, существенно влияют на динамику численности  
мелких млекопитающих и их паразитов [Иешко и др., 2020]. Мы не раз предпринимали 
попытки описать динамику их местообитаний с помощью ДЗ и ГИС-методов [Бугмырин и 
др., 2006, Гусева и др., 2014]. Современные технологии, а именно нейросетевое моделиро-
вание, позволяет по-новому подойти к этому процессу и построить карту различающихся 
биотопов, отражающих роль разнообразных экологических факторов в формировании 
уровня и динамики численности изучаемых групп животных [Коросов, 2023]. Одним из 
ключевых вопросов дешифрирования космических снимков является распознавание опре-
деленных типов леса, выявление эталонов. Типичный подход состоит в выявлении эталон-
ных участков либо в полевых условиях, либо на снимках высокого разрешения, либо при 
анализе спектральных областей сигнатур [Курбанов и др., 2015; Данилова и др., 2017; 
Рыльский, 2018]. Таким образом, с самых первых шагов всей процедуры дешифрирования 
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вводится дискретность выделенных категорий, т. е. огрубление реальной информации. 
В нашей работе рассмотрен другой подход, когда континуальность свойств сохраняется как 
для полевых данных, так и для яркостных характеристик, что позволяет учесть все нюансы 
их соотношений. Объединенные данные служат основой для выделения групп точек (со 
своими геоботаническими и яркостными характеристиками), формирующих отдельные 
кластеры. Яркостные характеристики этих кластеров (типов биотопа) служат основой при 
построении нейронной сети для дешифрирования снимков всей изучаемой территории, 
которые в состоянии уловить нелинейные соотношения между биологическими и 
отражательными свойствами объектов природы. В отличие от простых формул 
дискриминантного анализа (обычно используемого для дешифрирования), формулы ней-
ронной сети для обработки геоизображений имеют очень большое число коэффициентов, 
расчет которых представляет собой серьезную проблему даже для специализированного 
языка R. С этой проблемой достаточно легко справляется пакет Keras, специально разра-
ботанный для нейросетевого моделирования в среде R и Python [Шолле, 2022]. 

Цель нашей работы состоит в описании опыта дешифрирования вторичных лесных 
насаждений дистанционными методами с использованием нейросетевой модели в среде 
Keras. 

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ 
Материалы 

Работы проводились в июне-августе 2023 г. в окрестностях биологического стацио-
нара КарНЦ РАН в с. Гомсельга (Карелия) (экстент: 546015, 6877965, 553785, 6887535 в 
WGS 84 / UTM zone N36), на котором изучаются наземные позвоночные животные и их 
паразиты. За исключением болот и озер леса занимают 81 % территории, площади которых 
с 1950 г. вырублены на 85 % и заняты разновозрастными рубками и вторичными лесами 
[Беспятова и др., 2019]. 

Геоботанические описания проводились только на вырубках с возрастом 2–30 лет. В 
точках описаний фиксировались 16 характеристик: сомкнутость крон (фотографический 
анализ), полнота древостоя разных пород (полнотомер Биттерлиха), число поваленных 
деревьев, проективное покрытие разных типов растительности. Всего на 40 площадках 
выполнено по три описания (на расстоянии 10 м), всего 120 описаний. Привязка точек к 
карте выполнена в среде QGIS1. 

Космические снимки (Landsat-8) за июль и март 2023 г. получены с сайта Earth-
Explorer2. От летнего снимка взяты каналы 1–7, от зимнего — 1 и 2, всего 9 каналов. 
Методы 

Для каждой точки описания брали значения яркостей тех пикселей, которые 
совпадали с ними по координатам, всего по 3 пикселя на площадку. Таким образом, была 
сформирована матрица размером 9 полей (каналов) и 120 строк (точки описаний). 

Первичные описания обобщали. Все 40 площадок получили по 32 характеристики: 
по каждому из 16 показателей рассчитаны медиана и максимальное значение для трех 
описаний, относящихся к отдельной площадке. Получили рабочую матрицу, состоящую из 
32 полей (характеристик биотопа) и 40 строк (площадки в биотопах) (табл. 1). Для 
ликвидации эффекта размерности данные шкалировали (рассчитали нормированное  
отклонение). 

1 QGIS. Свободная географическая информационная система с открытым кодом. Электронный ресурс: 
http://qgis.org/ru/site/ (дата обращения 15.03.2025) 

2 EarthExplorer. Электронный ресурс: https://earthexplorer.usgs.gov/ (дата обращения 10.02.2025) 
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Для кластерного анализа таблица была увеличена до 120 строк, каждой точке опи-
сания приписали обобщенные характеристики по площадке. В процессе анализа 
объединили 32 геоботанических и 9 яркостных характеристик; каждая из 120 точек 
описания получила отдельную 41 характеристику. 

Сначала выполнили серию расчетов методом k-средних для поиска того числа 
кластеров (4), при котором средняя внутрикластерная дисперсия перестала снижаться 
(«метод локтя») [Шитиков, Мастицкий, 2017]. 

Затем выполнили кластеризацию методом Варда для всех 40 площадок по 41 
показателю. Зафиксировали результат на уровне деления дендрограммы на 4 ветки  
(4 кластера) и для каждой из них составили список площадок. Посчитали, что эти кластеры 
относятся к разным типам биотопов. В разные кластеры попали от 8 до 15 площадок. 

Далее выполнили построение нейронной сети для распознавания типов биотопов по 
яркости пикселей. Массив входных данных состоял из значения яркостей тех пикселей, 
которые соответствовали отдельному кластеру (clu), типу биотопа (табл. 2).  

 
Табл. 1. Фрагмент базы данных с обобщенными геоботаническими описаниями 

Table 1. Database fragment with generalized geobotanical descriptions 
 

 A B C D E F G H I J 
1 n me tran me kust me Pap me e me b me os me falls me sum ma tran 
2 1,0 0,7 −0,7 1,7 −0,4 −0,6 −0,4 −0,3 −0,8 1,4 
3 2,0 0,7 −0,7 1,7 −0,4 −0,6 −0,4 −0,8 −0,9 1,0 
4 3,0 0,3 0,1 1,7 −0,4 −1,1 −0,7 −0,8 −0,9 −1,2 
5 4,0 −2,3 0,1 −0,9 −0,4 −1,3 −1,0 −0,3 −2,0 −1,4 

…           
 

Табл. 2. Фрагмент массива для настройки нейросети: значения яркости летних (s)  
и зимних (w) каналов снимка (n — номер площадки, clu — тип биотопа) 

Table 2. A fragment of the array for configuring the neural network: brightness values  
of summer (s) and winter (w) channels of the image (n — site number, clu — biotope type) 

 
n clu x y s1 s2 s3 s4 s5 s6 s7 w1 w2 
1 2 551057,8 6882030 102 71 80 38 221 135 68 77 71 
2 2 551583,9 6881754 101 73 91 43 185 138 78 160 152 
3 3 551672,1 6881663 83 55 70 35 183 114 58 41 34 
4 2 551835,1 6881654 105 76 95 48 198 138 72 132 125 
...             

 
Входные данные были разбиты на два массива — обучающий (70 %, или 28 площа-

док) и тестовый (30 %, 12 площадок). Все показатели имели разную размерность, и по этой 
причине они были приведены к безразмерным значениям из заданного интервала  
[0, 1]: (z ← (x − min(x)) / (max(x) − min(x))). Трансформация каждого признака проведена 
отдельно для обучающей и тестовой выборок. После длинного ряда предварительных 
расчетов в среде R1 и Keras2 построен персептрон с четырьмя слоями. Входной слой имеет 
41 элемент. Первый скрытый слой составлен из 25 нейронов, второй из 15. Единственный 
выходной элемент может принимать четыре значения: 0–3 (номер кластера). В качестве 
функции активации задали relu. Построенную нейросетевую модель использовали для 
расчета номера кластера (типа биотопа) для всех пикселей исходного снимка. 

 
1  Электронный ресурс: https://www.r-project.org (дата обращения 10.04.2025) 
2  Электронный ресурс: https://keras.io (дата обращения 10.04.2025) 
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РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ 
При использовании метода k-средних выяснилось, что средняя внутрикластерная 

дисперсия резко снижается к уровню 4–5 кластеров и далее мало меняется. Исходя из этого, 
при кластеризации методом Варда учли только 4 группы площадок (рис. 1), которые мы 
рассматриваем как относящиеся к отдельным типам биотопов. 

Каждой площадке был присвоен свой номер кластера (clu, тип биотопа): в первый 
кластер (clu = 1) попали площадки 12, 11, 14, 17, 16, 13, 15; во второй (clu = 2) — 1, 3, 2, 4, 9, 
10, 6, 8, 5, 7; в третий (clu = 3) — 33, 34, 35, 36, 37, 38, 39, 40; в четвертый (clu = 4) — 32, 30, 31, 
29, 27, 28, 24, 25, 26, 21, 23, 20, 18, 19, 22. Так был составлен столбец clu в общей базе данных. 

Рис. 1. Дендрограмма классификации площадок 
Fig. 1. Dendrogram of site classification 

По усредненным характеристикам описаний (табл. 3) можно понять, какие насаж-
дения выделились. Первый биотоп — открытая молодая вырубка с почти полным отсут-
ствием деревьев и обильным травостоем. Второй биотоп с максимальной суммарной 
полнотой за счет березы и ели — это молодой лиственный лес. Третий биотоп с разно-
породным древостоем, но невысокой общей полнотой — жердняк. Четвертый биотоп со 
средней сомкнутостью и высоким травостоем — разреженные молодые зарастающие 
вырубки на влажных местах (рис. 2). Названия биотопов даны в соответствии с ранее 
разработанной типологией [Гусева и др., 2014]. 

Полученные значения кластеров позволили перейти к обучению нейронной сети. Варь-
ируя параметрами сети, установили, что увеличение размеров сети существенно улучшает 
прогнозные свойства модели. В разных вариантах точность моделей на обучающихся и тес-
товых выборках варьировалась в диапазоне от 55 до 90 %. В последнем варианте сети точность 
прогноза по обеим входным выборкам примерно равна и соответствует 88 и 87 % (рис. 2). 

Построенная модель позволяет подойти к созданию карты биотопов. Используя 
нейронную сеть, каждому пикселю геоизображения присвоили свой номер кластера, исходя 
из его яркостных характеристик. Таким образом, мы получаем карту распределения класте-
ров по территории. Пятна, сформированные однородными пикселями (одного цвета), рас-
сматриваем как отдельные типы биотопов. На результирующем псевдоцветовом гриде 
(рис. 3) отображено 5 типов кластеров, которые, помимо четырех описанных выше объектов, 
относятся и к другим, которые мы не изучали в поле. Некоторые из этих «белых пятен» 
(крупные болота, луга, озера, населенные пункты) мы закрыли белыми полигонами. Другие, 
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видимо, соответствуют многолетним приспевающим и спелым лесам, участкам с открытым 
грунтом. В разряд свежих вырубок также попали мелкоконтурные болота, грунтовые дороги. 

Табл. 3. Усредненные характеристики биотопических кластеров 
Table 3. Average characteristics of biotopic clusters 

№ 1 2 3 4 
Тип биотопа Свежие вырубки Лиственный лес Жердняки Молодняк 

Clust 1 2 3 4 
Tranc 8 82 77 47 
Mxi 24 24 7 1 
Lish 1 0 0 0 

Travi 52 17 39 55 
Kust 9 4 0 4 
Pap 0 1 10 12 
Mal 1 1 0 0 

c 0 0 1 0 
е 1 10 2 0 
b 1 12 5 2 
os 1 3 4 3 
ol 0 0 4 1 
i 0 1 1 1 
r 0 0 1 0 

fall 0 0 2 0 
Sum 3 28 18 10 

Рис. 2. График кривых потерь и точности 
Fig. 2. Graph of loss and accuracy curves 

Верификация грида выполнялась визуально, при сопоставлении с космическими 
снимками высокого разрешения (рис. 4) и личным опытом (хорошее знание местности). 
Грид в целом хорошо соответствует реальности; в частности, четко выделяются молодые 
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вырубки, лиственные леса. Видно смешение некоторых естественных типов биотопов с 
антропогенными — болота идентифицированы как свежие вырубки. 

 

 
 

Рис. 3. Грид типов биотопов в районе работ (0 — открытые вырубки,  
1 — разреженные вырубки, 2 — жердняки, 3 — лиственный лес, 4 — спелые леса); 

белыми полигонами закрыты болота, луга, озера, населенные пункты 
Fig. 3. A grid of biotope types in the work area (0 — open clearcuts, 1 — sparse clearcuts,  

2 — pole-stage stands, 3 — deciduous forest, 4 — mature forests);  
white polygons cover bogs, meadows, lakes, inhabited locality 

 
Верификация грида проводилась визуально, с использованием космических снимков 

высокого разрешения (рис. 4) и личного опыта (хорошее знание местности). Грид в целом 
хорошо согласуется с реальностью; выделяются молодые вырубки и лиственные леса. 
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Наблюдается смешение некоторых естественных биотопов с антропогенными — болота 
идентифицированы как свежие вырубки. 

 

 
 

Рис. 4. Сравнение грида с космическим снимком  
высокого разрешения 

Fig. 4. Comparison of the grid with a high-resolution satellite image 
 

 
Существенна и другая особенность полученного грида — внутренняя неоднород-

ность насаждений на территории одновозрастных рубок. При дешифрировании методом 
эталонных участков такая неоднородность по определению невозможна, поскольку по этой 
методике выделяется заданный тип объектов, а эталонные площадки должны включать в 
себя возможную изменчивость в пределах тестовых полигонов [Кузьменко и др., 2015; 
Рыльский, 2018; Fricker et al., 2019; Deur et al., 2020]. Однако в нашем случае ставилась 
задача изучения естественных градиентов среды, которые могут быть важны для животных. 
Таким образом, предлагаемый метод в состоянии уловить континуальные вариации 
структуры среды, хотя и выраженные в дискретных шкалах, но не навязанные размером 
заранее выбранных эталонных участков. 

Существует широкий круг исследований, использующих нейросетевой подход для 
анализа данных ДЗ, в т. ч. сверточные нейронные сети и др. [Канев и др., 2023; Махонько и 
др., 2023, Ma et al., 2024]. Однако их применение к дешифрированию снимков в научных 
целях может иметь ограничение, если в сеть на входе подать все наличные данные, а на 
выходе ожидать готовую классификацию. Эффективность этих процедур несомненна, но 
при таком моделировании из поля зрения уходит биологический предмет; коэффициенты 
модели не несут биологического смысла. В частности, остается непонятным, какую роль 
играют те или иные характеристики изучаемых объектов в их демаркации, например  
(в терминах данной работы), в чем состоит отличие одного типа биотопа от другого. Такой 
ответ может быть важен для понимания отличия ценности местообитаний для тех или иных 
видов животных. Апробированная нами технология, во-первых, сохраняет область для 
научной интерпретации результатов, а во-вторых, использует преимущества технологии 
нейросетевого моделирования, которое, в отличие от линейного дискриминантного 
анализа, в состоянии учесть сложные нелинейные отношения между изучаемыми объекта-
ми среды и их отражательными способностями. 

Важно учитывать и то, что подходы, основанные исключительно на автоматизиро-
ванной обработке данных ДЗ с применением нейросетевых алгоритмов, остаются незаме-
нимыми для анализа масштабных или труднодоступных территорий [Кедров, Тарасов, 
2017; Мельников и др., 2023]. Их главное преимущество — скорость и снижение затрат на 
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полевые работы. Тем не менее, такие методы могут упускать из внимания экологически 
ценные микроместообитания или антропогенные нарушения, не имеющие четких спек-
тральных сигнатур. Наш комбинированный подход позволяет сохранить преимущества 
машинного обучения, дополняя его «точечной» полевой верификацией, что критично для 
задач, требующих высокой детализации. 

 
ВЫВОДЫ 

Совместный классификационный анализ биологических свойств (полевых описа-
ний) и данных ДЗ (яркостных характеристик) позволяет получить точную оценку эколого-
биотопических параметров местообитаний, доступную для содержательной интерпре-
тации. При этом характер пространственной изменчивости характеристик передается в 
результаты анализа. В отличие от традиционных методов эталонного дешифрирования, 
данный метод не нивелирует внутреннюю изменчивость природных объектов априорной 
типологической схемой. 

Применение нейронной сети для создания правил дешифрирования космического 
снимка показало свою эффективность даже при дефиците эмпирических данных. Видимо, 
этого удалось достичь из-за возможности учета неявных нелинейных соотношений между 
свойствами объектов среды и их отражательной способностью. 

Использование пакета Keras для построения правил дешифрирования космических 
снимков показало его очевидные преимущества — возможность очень быстро обрабаты-
вать большие массивы данных. 
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