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ABSTRACT 

Facing the risk of soil salinization worldwide, there has been a growing interest in identi-

fying rapid and inexpensive tools for soil salinity assessment. Remote sensing has shown great 

advantages in the field in recent decades. In present research, Hyperion Hyperspectral remote sens-

ing data (EO-1) was used for characterization and mapping of salt-affected soils, to generate crop 

inventory map and to evaluate soil salinity impact on wheat crop growth in part of Mathura district 

of Uttar Pradesh representing Indo-Gangetic plain. Narrow bands can discriminate critical spectral 

differentials in detail and can assess the salinity hazard over crop. A detailed field survey was 

carried out in the study area in order to identify the salt-affected soils and to collect soil samples, 

groundwater table depth, chlorophyll content, LAI to characterize impact of soil salinity over crop. 

Various wheat crop spectra were collected for calculation of narrow band indices to discriminate 

various stress conditions. Spectral angle mapper (SAM) was used to generate crop inventory map 

with various types of crops. The same technique (SAM) was used to map various categories of salt 

affected soils represented by spectral endmembers of normal, slightly, moderately and highly salt-

affected soils. The results showed that various severity classes of salt-affected soils could be reli-

ably mapped using spectral angle mapper (SAM) analysis with an overall accuracy of 74.24%. 

Empirical relationships developed between crop & soil parameters and vegetation indices using 

SMLR could show its possibility with an R2 of 0.52 and 0.41 to predict LAI and CCI, respectively. 

Validation results showed the RMSE of 0.8 and 5.2 to predict LAI and CCI. Partial least square 

regression (PLSR) statistical model (using spectroradiometer derived narrow band indices) was 

developed to assess different stress level with varying crop and soil parameters.  
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INTRODUCTION  

Soil salinity is major soil quality indicators in arid and semi-arid area which adversely 

affect plant growth and development. Salinization is one of the most common land degradation 

processes and a severe environmental hazard [Dehaan, Taylor, 2002; 2003; Metternicht, Zinck, 

2003]. The salt in the soil solution (the “osmotic stress”) reduces leaf growth and to a lesser extent 

root growth, and decreases stomatal conductance and thereby photosynthesis [Munns, 1993]. Soil 

salinization influences soil properties, leading to reduction in crop yields and land productivity. 

Basically, soil salinity is a dynamic process with severe consequences for the soil, hydrological, 

climatic, edaphic, geochemical, agricultural, social, and economic aspects. Therefore, for greater 

development and implementation of sufficient soil reclamation programs and preventing any fur-

ther salinization to sustain agricultural lands and natural ecosystems, information on the spatial 

extent, nature and distribution of soil salinity is becoming very essential. Thus, timely detection of 

soil salinity, monitoring and assessment of its severity level and extent become very important in 

 

1 Cotton Breeding, Seed Production and Agrotechnologies Research Institute (CBSPARI), P.O. Box 111202,  

UzPITI str., Tashkent province, Uzbekistan; e-mail: mirzoolim89@gmail.com 
2 Indian Institute of Remote Sensing (IIRS), Kalidas road str., 4, Dehradun, India; e-mail: mamta9507@gmail.com  
3 Tashkent Institute of Irrigation and Agricultural Mechanization Engineers (TIIAME),  

P.O. Box 100000, Kori-Niyoziy str., 39, Tashkent, Uzbekistan; e-mail: tiqxmmi1977@mail.ru 
4 Cotton Breeding, Seed Production and Agrotechnologies Research Institute (CBSPARI), P.O. Box 111202,  

UzPITI str., Tashkent province, Uzbekistan; e-mail: normat8689@mail.ru  



Maps and GIS in agriculture and land use 

272 
 

its beginning at local and regional scales. A large area of the Indo-Gangetic plain including Uttar 

Pradesh state consists of irrigated command area of arid and semi-arid climatic conditions and 

these areas are facing serious threats of land degradation due to salinization and alkalinization. 

Nearly 3.37 % of total geographical area of Mathura district is characterized under wasteland cat-

egory and of which 26.46 % area is affected by salinity and alkalinity (http:/dolr.nic.in/waste-

land.htm). Expansion of irrigation for intensive agriculture in this region has led to the develop-

ment of salt-affected soils (FAO 1983) and poses significant threat to the world’s productive ca-

pacity of soil and food grain production. Salinization and alkalization induced soil degradation 

occur in irrigated area where the water table approaches to the ground surface. Salts lying below 

sub-surface soil layer get dissolved and transported to the surface and sub-surface soils and ad-

versely affect physio-chemical properties of these soils. It causes reduction in soil fertility and its 

productivity. Therefore, a reliable information on the nature and spatial extent of various severity 

classes of salt-affected soils are prerequisite to restore their fertility and to prevent their further 

degradation [Ghosh et al., 2012]. 

Facing the risk of soil salinization worldwide, there has been a growing interest in identi-

fying rapid and inexpensive tools for soil salinity assessment [Metternicht, Zinck, 2003]. Remote 

sensing has shown great advantages in the field in recent decades. As a remotely sensed indicator, 

the type and growing conditions of vegetation can provide a spatial overview of salinity distribu-

tion [Dehaan, Taylor, 2002; Tilley et al., 2007; Zhang et al., 1997], which thus help land managers 

to reduce the risk of salinization [Wiegand et al., 1994]. Soil salinity can be detected directly from 

remotely sensed data through salt features that are visible at the soil surface, such as bare soil with 

white salt crusts on the surface or indirectly from indicators such as the presence of halophytic 

plant, the performance level of salt-tolerant crops [Allbed, Kumar, 2013]. Salt-affected soils are 

formed as accumulation of salts in the surface and sub-surface of soil and develop surface features 

that help in mapping their spatial extent and severities. Identification of these soil surface features 

serves as useful input for assessing salt affected soils. As salinity increases, more salts will appear 

at the soil surface, favoring the use of conventional remote sensing tools. In general, reflectance 

increases with increase in salt concentration on the surface of soil [Ghosh et al., 2012]. Soil salinity 

is the dynamic process leading to constraints in identification of proper behavior of salt features, 

spectrally, spatially and temporally. Detection of salts on the surface can be difficult due to the 

presence of vegetation and other surface features that may contribute to creating spectral confusion 

with the salt reflectance properties. In this domain, the spectral bands most sensitive to salt-stress 

across diverse plants have not yet been defined; therefore, the predictive ability of previous vege-

tation indices (VIs) may not be satisfied for salinization monitoring. The soil samples and crop 

spectra were collected to investigate the relationship between vegetation spectra and soil salinity 

in part of Mathura district of irrigation command area of Indo-Gangetic Alluvial plains.  

Mapping and monitoring soil salinity using remote sensing data has advantages. Using 

remote sensing technology include saving time, wide coverage (satellite remote sensing data pro-

vides the only source when data is required over large areas or regions), are faster than ground 

methods, and facilitate long term monitoring. These techniques provide multispectral image with 

resolutions that can be ranged from medium to high, as well as Hyperspectral image. These re-

motely sensed data have been successfully used for monitoring and mapping soil salinity for dec-

ades with mixed results. Many researchers have used different techniques to monitor and map soil 

salinity using remote sensing data, as discussed below. 

Extensive research using satellite imagery for mapping and monitoring soil salinity has 

been conducted over the last three decades, mostly with multispectral sensors. These include Land-

sat Thematic Mapper (TM), Landsat Multispectral Scanner System (MSS), Landsat Enhanced 

Thematic Mapper Plus (ETM+), SPOT, Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (Terra-ASTER), Linear imaging self-scanning sensor (LISS-III, LISS IV) and IKO-

NOS [Verma et al., 1994; Dwivedi, 2001; Dwivedi, 2008]. Application of broadband remote sens-

ing in salinity studies is restricted due to limitations in spatial and especially spectral resolution 
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that masks detailed of various kinds of salt-affected lands spectral signatures [Cloutis, 1996]. A 

variety of image processing methods such as supervised classification and spectral extraction tech-

niques were used in the past to extract information from these multispectral satellite data in map-

ping of salt-affected soils [Verma et al., 1994; Dwivedi, Sreenivas, 1998; Metternicht, Zinck, 2003; 

Howari, 2003]. However, it is very difficult to distinguish the degree of salinity using broadband 

multispectral data as there is spectral confusion. Through multispectral data it can be discriminated 

only saline and non-saline classes of soil. There can be observed spectral confusion between clas-

ses of moderately, slightly salt-affected soils and normal soils. Some studies [Peng, 1998]; used 

geographic information system techniques to integrate multispectral data with field data, such as 

groundwater mineralization, groundwater depth, and topographic data, to overcome the weakness 

of multispectral images. They were successful in mapping salinity classes, but required ground 

measurements in numerous training areas and could not quantitatively estimate soil salinity.  

Hyperspectral sensors are a powerful and versatile tool for monitoring environmental stress 

because of the continuous sampling and the high spectral resolution. Narrow bands can discrimi-

nate critical spectral differentials in detail and can assess the salinity hazard over crop. Further-

more, hyperspectral remote sensing data provide almost continuous reflectance spectrum and help 

to generate unique spectral signature of various surfaces to map them with high accuracy. Various 

Image processing methods such as spectral unmixing technique, the linear mixture model (LMM) 

were used for characterization and mapping salt affected soils. Various categories of salt affected 

soil represented as endmembers are used for spectral unmixing analysis [Tompkins et al., 1997; 

Ghosh et al., 2012]. Potential of hyperspectral satellite data in mapping of salt-affected soils were 

investigated by several researchers [Dehaan, Taylor, 2002; Taylor, Dehaan, 2003; Dutkiewicz et 

al., 2009]. 

Recently, several hyperspectral indices such as brightness index (BI), salinity index (SI), 

saturation index (SI) and hue index (HI) were successfully used for quantitative mapping salt af-

fected soils, SOC and SOM using hyperspectral satellite data (Hyperion) [Zhuo et al., 2008]. The 

spectral reflectance of the salt features at the soil surface has been widely studied using remote 

sensing and used as a direct indicator for soil salinity detection and mapping. However, when the 

soil moisture is high or the crust salt is invisible on the soil surface or mixed with other soil con-

stituents, this direct approach becomes complicated and may yield unreliable results since these 

factors influence the soil spectral reflectance. On the basis of this concept, the simple ratio, SR 

[Jordan, 1969], the normalized difference vegetation index, NDVI [Rouse et al., 1974], the en-

hanced vegetation index, EVI [Huete et al., 1996.], the green atmospherically resistant vegetation 

index, GARI [Gitelson et al., 1996] and etc. are used to assess the impact of soil salinity over crop 

growth. 

In recent years, several multivariate statistical techniques such as partial least square re-

gression (PLSR), stepwise multiple linear regression (SMLR) have been used to develop the rela-

tionship between soil and crop parameters as well as field derived spectra for assessing the impact 

of soil salinity over crop growth. PLSR is one of the most common methods for analysis spectral 

data for spectral calibration and prediction. In recent years, PLSR has been used to build LAI and 

CCI prediction models [Madari et al., 2006; Stevens et al., 2006].  

There are different techniques used for matching the measured spectra with reference spec-

tra depending on the criteria adopted for measuring the similarity/ closeness between the two spec-

tra. Broadly these techniques are distance-based, angle-based and correlation-based measure. 

Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an n-D angle 

to match pixels to reference spectra.  

Spectral Angle Mapper mapping method was used to complete the objectives of the work 

which is given below: 

• to prepare soil salinity map of study area using Hyperion data; 

• to prepare the crop inventory map of study area using Hyperion data;  

• to evaluate soil salinity impact on wheat crop using Hyperion data.  
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MATERIALS AND METHODS OF RESEARCHES 

Study area 

A part of Mathura district of Uttar Pradesh representing Indo-Gangetic plain was selected 

for the study. Mathura is one of the western districts of Uttar Pradesh and forms a part of Yamuna 

basin and lies between 26° 76´ to 27° 62´ North latitudes and 77° 31´ to 77° 59´ East longitude. 

The area has good network of irrigation canal, distributaries and minors to irrigate the field. The 

Mathura district is having a serious problem of salty, brackish, oily water, which is not suitable for 

irrigation. 

The climate of the district is semi-arid and characterized by intense hot summers, cold and 

foggy winters and general dryness throughout the year except during south-west monsoon period 

from July to September. 

The mean annual temperature is 24.4 °C, maximum temperature in May goes up to 45 °C 

and the minimum temperature dips up to 2° during winters. In winter season the mean maximum 

temperature is 23.8 °C in the first week of December and last week of February. The average 

annual rainfall varies between 505−620 mm and 92 % of it is received during the rainy season 

comprising July, August and September months of the year.  

 The year can be divided into three seasons for example winter season from December to 

February with January being the coldest months, summer season from March to middle of June 

being the hottest months. The rainy season which receives rains from South-West monsoon in July 

continues till the end of September followed by the post monsoon period from October to Novem-

ber.  

The landscape of district is nearly level to very gentle sloping with moderate to poor surface 

drainage. Mathura district mostly consists of alluvial soils those are formed by the silt of Yamuna 

& Ganga canal, which are quite fertile whereas, the district is also having ravenous saline, alkaline 

and waterlogged soils. Soils developed in the district have been influenced by parent material and 

microclimate. Basically, the surface texture of soil ranges from silt loam to clay loam. In district 

the large area soils are immature, light sandy colour, coarse, silt loam to clay soils, low to medium 

salty with high concentration of water-soluble salts, medium calcareous, water logged with me-

dium to high water holding capacity, medium carbonic matter nitrogen and parental/soil fertility, 

responsive to fertilizer use. These lands are intensively cultivated for wheat, rice, mustard, sugar-

cane, sorghum etc. crops. 

Satellite Data used 

• The Hyperion (EO-1) data corresponding to path and row number of 146/41 of 

Mathura district were acquired on May 15, 2005, and January 07, 2005.  Hyperion has 242 con-

tiguous spectral channels (22 bands with overlapped wavelengths) out of that 198 were calibrated 

and covering spectral range of 356−2576 nm at an interval of 10 nm. Bands 8 to 57 are for visible-

to-near-infrared (VNIR) and 77 to 224 in shortwave-infrared (SWIR) regions [Datt et al., 2003]. 

All 242 bands of Hyperion are not usable because of the increased signal to noise ratio. This in-

creased noise relative to signal is the consequence of Hyperion’s greater distance from the reflect-

ing surface of the target and the increased atmospheric scattering and absorption that comes with 

space platform remote sensing [Lillesand, Kiefer, 2000]. The Level 1 radiometric (L1R) product 

was used in the study. According to sensor characteristics sensor spatial resolution is 30 m  and  

12 bit radiometric quantization [Pearlman et al., 2003]. 

• IRS LISS IV data acquired on April 6, 2006 and Standard FCC at 1: 15 000 scale 

was generated for visual interpretation of salt affected soils, wheat crop condition and to locate 

these soils during field survey. 

• Georeferenced Landsat ETM+ Data (Acquired on Oct. 22, 1999) was used to dis-

criminate crops grown in the study area. 

• During the generating of crop inventory map of the study area there were used mul-

tiple data to discriminate crops grown in area. January month 2005 Hyperion data was used for 

generating crop inventory map which is older data set. Real ground truth information 2014 might 
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not match with the year of 2005. Taking into account this fact it has been studied multiple datasets 

for discriminating of crops. As agronomy point of view, it is known every crop’s length of growing 

period. As per this knowledge crops were identified in particular area for 2005.  

Software’s used 

• ENVI 4.3, standard 5.0, (Environment for Visualizing Images, Research System, 

Inc) software was used for pre-processing and processing of the satellite data. It offers “Hyperion 

tool kit” to analyze Hyperspectral satellite data.  

• ERDAS IMAGINE 13 was used to mask wheat area and accuracy assessment. 

• ARC GIS 10.1 — developed by ESRI used to export generated maps. 

• Statistical software: Statistica 7.0 is used for PLSR model. 

Field data collection 

A detailed field survey was carried out in the study area in order to identify the salt-affected 

soils and to collect soil samples (Theta probe), groundwater table depth, chlorophyll content (CCM 

200), LAI (AccuPAR LP80) to characterize impact of soil salinity over crop vigour. Various wheat 

crop spectra were collected (SVC Spectroradiometer) with varying degree of salinity for calcula-

tion of narrow band indices to discriminate various stress conditions. Random sampling technique 

was applied and total 29 sites (3 additional highly salt affected lands) were identified where actual 

wheat crop field are selected for sample collection. Soil samples were collected from surface and 

subsurface of soil. Chlorophyll content was taken from the upper, middle and lower portion of 

wheat crop plant. LAI were taken upper side of crop (APAR), and below portion of canopy 

(BPAR). Crop biophysical parameters are taken in 4−5 repetitions for better accuracy. The surface 

and subsurface depth ranged from 0−15 and 15−30−40 cm. Thus, total of 58 samples (6 additional) 

were collected from the above-mentioned sites. Wheat crop spectra were collected with varying 

degree of salinity. The total number of crop spectra that was collected from SVC spectroradiometer 

was more than 130 (average four spectra for each of the locations) with various vegetation condi-

tions of wheat crop. Soil samples were analyzed in laboratory to characterize pH, electrical con-

ductivity (EC). 

Pre-processing of Hyperion satellite data 

Hyperion data was corrected for abnormal pixels, stripping affects prior to the atmospheric 

correction. In the study area, ENVI’s Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-

cubes (FLAASH) module was applied on Hyperion data for atmospheric correction. The study 

area is rural and it falls in tropical climate. Thus, tropical atmospheric and rural aerosol model of 

FLAASH were selected and other parameters were defined based on metadata of the Hyperion 

image file. 

Image endmembes were extracted following the standard processing steps of Minimum 

Noise Fraction (MNF) Transformation, Pixel Purity Index (PPI), Selection of Endmembers.  

Accuracy assessment was performed to determine how accurately pixels were classified to 

various classes of the salt affected soils [Janssen, Van der Wel, 1994]. Performance of all classified 

maps was evaluated by accuracy assessment. Point map was prepared from optical images and 

used for performance evaluation. Confusion matrix was prepared to analyze accuracy of each ag-

ricultural class in crop inventory map and each soil salinity class in soil salinity map. Accuracy 

was estimated in reference to ground truth data for producer’s, user’s and overall accuracy. Kappa 

and kappa statistics were also calculated. Accuracy assessment was performed in ERDAS 13. 

 

RESULTS OF RESEARCHES AND THEIR DISCUSSION 

Physio-chemical characteristics of soils in the study area 

The soil samples collected were air-dried to eliminate the influence of water content and 

passed through a 2-mm sieve to remove large debris, stones, and stubbles. The samples were ana-

lyzed for their physio-chemical properties. The surface and subsurface soil samples were analyzed 

for pH, EC, bulk density. The electrical conductivity (EC) was measured in extracted solutions 
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using Electrical conductivity meter. Salt affected soils are in general categorized into slight, mod-

erate and severe classes based on salt concentration in the soil.   

Soil salinity map showing different levels of salinity has shown the maximum confusion 

between slightly salt affected and normal soil. An overall accuracy of 74.24 % was achieved. Crop 

inventory map showing different crops, land use and land cover features by the same mapping 

method SAM classifier has shown the overall accuracy of 82.14 % with a user’s and producer’s 

accuracy of 85 % for wheat class. 

 

 

  

Fig. 1. Soil salinity map by using SAM 

mapping method 

Fig. 2. Crop inventory map by us-

ing SAM mapping method 

 

 

Indices to assess the soil salinity impact over crop growth 

During the field investigation period more than 130 crop spectra were collected. From the 

field derived spectra 24 indices were calculated to evaluate the salinity impact over crop growth 

(table 1).  

These indices were calculated from satellite image as well. After completing the prepara-

tion of crop inventory map the wheat area were extracted from the crop inventory map for further 

processing. Extracted wheat crop area was used to apply over indices map to see the impact of 

salinity over wheat crop vigour. Some results of indices are given below (fig. 3). 

Among all 24 indices, modified red edge normalized difference vegetation index 

(mNDVI 705) and structure insensitive pigment index (SIPI) have shown efficiency to map the 

impact of soil salinity over wheat crop. However, both the indices behaved differently due to their 

different wavelength region and so its different response to target. 
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Table 1. Performance of vegetation indices for predicting soil salinity across wheat crop vigour 

with coefficient of determination (R2) of linear regression 

 

Vegetation indices Formula 

Modified red edge normalized difference vegeta-

tion index  
MNDVI705=750-705/750+705-2*445  

Structure insensitive pigment index (SIPI)  SIPI=800-445/800-680  

Normalized difference water index  NDWI=857-1241/857+1241 

Enhanced vegetation index (EVI) 2.5 × (R800– R670)/(1 + R800+ 6 ×R670– 7.5 × R450) 

 

  

 

The modified red edge normalized difference vegetation index (mNDVI 705) is a modifica-

tion of the red edge NDVI. It differs from the red edge NDVI by incorporating a correction for 

leaf specular reflection. The mNDVI 705 capitalizes on the sensitivity of the vegetation red edge to 

small changes in canopy foliage content, gap fraction, and senescence. Applications include pre-

cision agriculture, forest monitoring, and vegetation stress detection.  

The mNDVI 705 index is defined by the following equation: 

 

mNDVI705=750-705/750+705-2*445. 

 

It can be understood from this formula that modified red edge NDVI mostly takes into 

account NIR reflectance. In fig. 3 (c) moderately and highly salt affected area crop condition is 

normal to moderately stressed. This can be explained by cell turgidity of plant. It is known that 

cell structure of plant is dominant factor in NIR region. Taking into account this fact NIR reflec-

tance shows higher reflectance because of the cell turgidity. Proper irrigation can also reduce sa-

linity hazard.  It is not necessary that plant is not under any kind of stress. In contrast to mNDVI, 

SIPI has indicated some kind of stress due to less pigment (chlorophyll) content. 

The structure insensitive pigment index (SIPI) is a reflectance measurement designed to 

maximize the sensitivity of the index to the ratio of bulk carotenoids (for example, alpha-carotene 

and beta-carotene) to chlorophyll while decreasing sensitivity to variation in canopy structure (i.e. 

LAI). Increases in SIPI are thought to indicate increased canopy stress (carotenoid pigment). Ap-

plications include vegetation health monitoring, plant physiological stress detection and crop pro-

duction and yield analysis. SIPI is defined by the following equation:  

 

SIPI=800-445/800-680. 

 

In fig. 3 (b) structure intensive pigment index are taking into account leaf pigment and light 

use efficiency, because of this crop condition is varying between low vigour to moderate in high 

and moderately salt affected place.  

The same tendency such as mNDVI can be seen in EVI and NDWI where NDWI are taking 

into account canopy water content of plant whereas EVI is one of the most common predictors of 

LAI. After calculation of all indices it has been selected 2 indices (mNDVI and SIPI) to evaluate 

salinity impact over wheat crop growth. In ENVI software matrix option has been selected to bring 

indices map and soil salinity map together to see and evaluate impact of salinity over crop growth. 

Here it can be seen by using matrix option classes are divided into 9 categories. These indicators 

show it can be seen that moderately salt affected places are stressed crops. The same explanation 

can be for highly salt affected areas also have normal crop condition this can be because of the 

proper irrigation, and agronomic management of crop. 
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(a)                                                                                              (b) 

 

 

          
(c)                                                                                     (d) 

 

 

Fig. 3. Impact of salinity over wheat crop vigour (a) NDWI, (b) SIPI, (c) MRENDVI, (d) EVI 
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                               (a)                                                                                 (b) 

 

Fig. 4. Impact of salinity over wheat crop:  

(a) Salinity map: Modified Red Edge NDVI;  

(b) Salinity map: Structure Intensive Pigment Index 

 

 

Results of multivariate statistical techniques 

Stepwise multiple linear regression (SMLR) 

Empirical relationships developed between crop parameters (i.e., LAI and CCI) & soil pa-

rameters (i.e., pH and EC) and vegetation indices using Stepwise Multiple Linear Regression 

(SMLR) showed its fitness with an R2 of 0.52 and 0.41 to predict LAI and CCI, respectively. 

Validation results showed the RMSE of 0.8 and 5.2 to predict LAI and CCI. Results of SMLR are 

given in table 2. 

 

Table 2. Developed empirical relationships between crop and soil parameters  

and vegetation indices 

 

Parameter 

 

Empirical relationship 

 

R2 

LAI -10.12+10.45XWBI+4.98XEVI-87.49XNDLI-57.32XCAI+0.029XSR 0.52 

CCI -151.463 +71.21XmNDVI +78.53XMSI +84.63XWBI-0.153XSR 0.41 

EC (Surface) 
-25.66XWBI+ 246.1X NDLI-4.3X EVI+16.65X mNDVI-0.05X 

CRI1+32.65XNDWI+14.73XMSI 
0.40 

EC (Subsurface) 11.02-11.8XWBI-7.026X EVI+113.81X NDLI-0.03XCRI2+5.69XmNDVI 0.31 

pH (Surface) 0.707+0.66XARI2+7.46XWBI+0.03XSR 0.16 

pH (Subsurface) 
4.62+0.65xARI2+81.57XCAI-0.207XCRI2+5.34XWBI-5.93XNDWI-

2.96XmNDVI-12.63XNDNI+3.2X EVI+0.20XCRI1 
0.26 
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Validation of empirical relationships 

 

 

 
(a)                                                            (b) 

 

Fig. 5. Validation graph of empirical relationship (a) LAI (b) CCI 

 

 

Fig. 5 shows the validation of empirical relationships of predicted LAI and CCI. X axis of 

the graph shows the observed LAI and CCI which is dependant and ground-based factor where Y 

axis gives the information about predicted LAI and CCI and their relationship. Predicted LAI and 

CCI can be used to evaluate soil salinity impact over crop growth.  

 

Table 3. Quantification of error of estimation 

 
Parameter RMSE R2 

LAI 0.83 0.41 

CCI 5.2 0.37 

 

 

Partial least square regression (PLSR) 

Using the Statistica 7.0 software, the relationship between crop parameters (i.e. LAI & 

CCI) and Soil parameter (i.e. EC and pH) and Hyperspectral indices were assessed using a Partial 

Least Squares (PLS) Regression.  

A total of 24 spectral vegetation indices were calculated from reflectance responses. Indi-

ces represented each of the three main regions of the electromagnetic spectrum, i.e. VIS, NIR, and 

SWIR regions, each of which is associated with specific plant attributes, such as plant pigments, 

internal leaf structure and moisture content. Vegetation indices have been found to be related to 

plant biophysical properties, such as leaf area index, green cover, green biomass, or capacity of 

canopy to absorb photo-synthetically active radiation. To develop a multivariate relationship and 

to account for the multi-collinearity between indices PLSR has been performed between indices 

and the crop (i.e. LAI, CCI) and soil (i.e. EC) parameters. A separate test data has been used to 

validate the results. 

Fig. 7 shows the relationship between LAI, CCI and EC with Hyperspectral indices. The 

indices contributing more information can be judged from its regression coefficients. The PLS 

regression results on the training data set demonstrated the potential to predict the LAI, CCI and 

EC from proximal hyperspectral data. There is a sufficient correlation between predicted and 

measured values for the validated samples, i.e. R2 of 0.61, 0.59 and 0.49 for LAI, CCI and EC 

respectively. The root means square error of prediction (RMSEP) was relatively low i.e. 0.7, 4.7 

and 1.5 respectively indicates good forecast accuracy. 
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(a)                                                                           (b) 

 

(c) 

 

Fig. 6. Important indices related with ground-based parameter: (a) LAI, (b) CCI, (c) EC 

 

Validation of PLSR model 
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(c) 

 

Fig. 7. Validation graph of PLSR model (a) LAI, (b) CCI, (c) EC 
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Table 4. Results of PLS regression of ground derived parameters and hyperspectral indices 

 

Parameter 
No of optimum  

No of PLS factor 
RMSE Important Indices 

LAI 2 0.7 SR, CRI2, ARI2 

CCI 7 4.7 MSR, PRI, NDVI, NDLI, MNDVI, SIPI 

EC 5 1.5 CRI1, NDVI, NDLI, NDWI, SIPI, MSR 

 

 

Predicted LAI and CCI  

The predicted LAI and CCI map of year 2005 were produced by using stepwise multiple linear 

regression (SMLR) model (generated using year 2014 field data). The predicted map also showed 

the similar tendency to map crop stress status as that of individual vegetation indices.  

 

 

           
(a)                                                                         (b) 

 

 

Fig. 8. Predicted (a) LAI and (b) CCI maps (Jan, 2005) for crop stress assessment  

using SMLR statistical technique 

 

 

After generating CCI and LAI maps density slicing operation has been done and classes 

were categorized having value low LAI (<1.5), medium LAI (1.5-2.5), high LAI (<2.5) whereas 

CCI values were low CCI (<15), medium CCI (15-30), high CCI (>30). The same tendency has 

been seen in LAI and CCI predicted maps as it is in indices. 

 

Predicted LAI 
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CONCLUSIONS 

Taking into consideration the data analyses, indices calculation, field data and statistical 

techniques it can be concluded and the following conclusions could be made from the results of 

this study: 

Soil salinity map showing different levels of salinity by using spectral angle mapper map-

ping method has shown the maximum confusion between slightly salt affected and normal soil. 

An overall accuracy of 74.24 % was achieved. 

The crop inventory map by the same mapping method SAM classifier has shown the over-

all accuracy of 82.14 % with a user’s and producer’s accuracy of 85 % for wheat class. 

The narrow band and broad band vegetation indices could capture the variability of crop 

vigour with respect of soil salinity. While selecting each and every indice spectral region of the 

indices (VIS, NIR, SWIR), formula should be carefully considered in order to evaluate impact of 

soil salinity over crop growth. Results showed that mostly salt affected lands are having stressed 

crop but on the other hand some high vigour crops also can be seen in the affected land. This can 

be explained by agronomic point of view there can be proper irrigation facilities, management 

practices and also canopy cover will also play a role while calculating these indices.  

Empirical relationships developed between crop biophysical parameters such as LAI and 

CCI and soil parameters (pH and EC) and vegetation indices using stepwise multiple linear regres-

sion (SMLR) multivariate statistical method could show its possibility with an R2 of 0.52 and 0.41 

to predict LAI and CCI, respectively. Validation results showed the RMSE of 0.8 and 5.2 to predict 

LAI and CCI.  

Partial least square regression (PLSR) statistical technique by using Statistica 7.0 software 

regression results on the field data demonstrated the potential to predict the crop parameters (i.e. 

LAI and CCI) and soil parameter (i.e., EC). The predicted LAI and CCI map produced by SMLR 

also showed the similar tendency to map crop stress status as that of individual vegetation indices.  

Finally, taking into account the fact that currently the major parts of soil of Mathura District 

of Uttar Pradesh are affected (26.46 %) by salinity and alkalinity. Remote sensing especially hy-

perspectral remote sensing with high spectral resolution can help to monitor and map salt affected 

areas with high accuracy which can help landowners, agronomists to manage better reclamation 

procedures. Therefore, at the expense of reducing mineralization and lowering the ground water 

levels on the irrigated lands can be prevented from the increase of moderately and highly saliniza-

tion. Otherwise salt affected soils with various degree of salinity can adversely affect physico-

chemical properties of soils which cause reduction in soil fertility and its productivity and it also 

negatively affects on plant growth and development. Complete system of desalinization of all types 

of soils has not been entirely investigated yet. This shows the importance of through comparative 

analyses of data, collected from research and investigations and generalizing working experience 

of leading landowners and farm associations. The solution to the problem is call of the times.  
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