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ABSTRACT

Facing the risk of soil salinization worldwide, there has been a growing interest in identi-
fying rapid and inexpensive tools for soil salinity assessment. Remote sensing has shown great
advantages in the field in recent decades. In present research, Hyperion Hyperspectral remote sens-
ing data (EO-1) was used for characterization and mapping of salt-affected soils, to generate crop
inventory map and to evaluate soil salinity impact on wheat crop growth in part of Mathura district
of Uttar Pradesh representing Indo-Gangetic plain. Narrow bands can discriminate critical spectral
differentials in detail and can assess the salinity hazard over crop. A detailed field survey was
carried out in the study area in order to identify the salt-affected soils and to collect soil samples,
groundwater table depth, chlorophyll content, LAI to characterize impact of soil salinity over crop.
Various wheat crop spectra were collected for calculation of narrow band indices to discriminate
various stress conditions. Spectral angle mapper (SAM) was used to generate crop inventory map
with various types of crops. The same technique (SAM) was used to map various categories of salt
affected soils represented by spectral endmembers of normal, slightly, moderately and highly salt-
affected soils. The results showed that various severity classes of salt-affected soils could be reli-
ably mapped using spectral angle mapper (SAM) analysis with an overall accuracy of 74.24%.
Empirical relationships developed between crop & soil parameters and vegetation indices using
SMLR could show its possibility with an R? of 0.52 and 0.41 to predict LAl and CClI, respectively.
Validation results showed the RMSE of 0.8 and 5.2 to predict LAI and CCI. Partial least square
regression (PLSR) statistical model (using spectroradiometer derived narrow band indices) was
developed to assess different stress level with varying crop and soil parameters.
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INTRODUCTION

Soil salinity is major soil quality indicators in arid and semi-arid area which adversely
affect plant growth and development. Salinization is one of the most common land degradation
processes and a severe environmental hazard [Dehaan, Taylor, 2002; 2003; Metternicht, Zinck,
2003]. The salt in the soil solution (the “osmotic stress”) reduces leaf growth and to a lesser extent
root growth, and decreases stomatal conductance and thereby photosynthesis [Munns, 1993]. Soil
salinization influences soil properties, leading to reduction in crop yields and land productivity.
Basically, soil salinity is a dynamic process with severe consequences for the soil, hydrological,
climatic, edaphic, geochemical, agricultural, social, and economic aspects. Therefore, for greater
development and implementation of sufficient soil reclamation programs and preventing any fur-
ther salinization to sustain agricultural lands and natural ecosystems, information on the spatial
extent, nature and distribution of soil salinity is becoming very essential. Thus, timely detection of
soil salinity, monitoring and assessment of its severity level and extent become very important in
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its beginning at local and regional scales. A large area of the Indo-Gangetic plain including Uttar
Pradesh state consists of irrigated command area of arid and semi-arid climatic conditions and
these areas are facing serious threats of land degradation due to salinization and alkalinization.
Nearly 3.37 % of total geographical area of Mathura district is characterized under wasteland cat-
egory and of which 26.46 % area is affected by salinity and alkalinity (http:/dolr.nic.in/waste-
land.htm). Expansion of irrigation for intensive agriculture in this region has led to the develop-
ment of salt-affected soils (FAO 1983) and poses significant threat to the world’s productive ca-
pacity of soil and food grain production. Salinization and alkalization induced soil degradation
occur in irrigated area where the water table approaches to the ground surface. Salts lying below
sub-surface soil layer get dissolved and transported to the surface and sub-surface soils and ad-
versely affect physio-chemical properties of these soils. It causes reduction in soil fertility and its
productivity. Therefore, a reliable information on the nature and spatial extent of various severity
classes of salt-affected soils are prerequisite to restore their fertility and to prevent their further
degradation [Ghosh et al., 2012].

Facing the risk of soil salinization worldwide, there has been a growing interest in identi-
fying rapid and inexpensive tools for soil salinity assessment [Metternicht, Zinck, 2003]. Remote
sensing has shown great advantages in the field in recent decades. As a remotely sensed indicator,
the type and growing conditions of vegetation can provide a spatial overview of salinity distribu-
tion [Dehaan, Taylor, 2002; Tilley et al., 2007; Zhang et al., 1997], which thus help land managers
to reduce the risk of salinization [Wiegand et al., 1994]. Soil salinity can be detected directly from
remotely sensed data through salt features that are visible at the soil surface, such as bare soil with
white salt crusts on the surface or indirectly from indicators such as the presence of halophytic
plant, the performance level of salt-tolerant crops [Allbed, Kumar, 2013]. Salt-affected soils are
formed as accumulation of salts in the surface and sub-surface of soil and develop surface features
that help in mapping their spatial extent and severities. Identification of these soil surface features
serves as useful input for assessing salt affected soils. As salinity increases, more salts will appear
at the soil surface, favoring the use of conventional remote sensing tools. In general, reflectance
increases with increase in salt concentration on the surface of soil [Ghosh et al., 2012]. Soil salinity
is the dynamic process leading to constraints in identification of proper behavior of salt features,
spectrally, spatially and temporally. Detection of salts on the surface can be difficult due to the
presence of vegetation and other surface features that may contribute to creating spectral confusion
with the salt reflectance properties. In this domain, the spectral bands most sensitive to salt-stress
across diverse plants have not yet been defined; therefore, the predictive ability of previous vege-
tation indices (VIs) may not be satisfied for salinization monitoring. The soil samples and crop
spectra were collected to investigate the relationship between vegetation spectra and soil salinity
in part of Mathura district of irrigation command area of Indo-Gangetic Alluvial plains.

Mapping and monitoring soil salinity using remote sensing data has advantages. Using
remote sensing technology include saving time, wide coverage (satellite remote sensing data pro-
vides the only source when data is required over large areas or regions), are faster than ground
methods, and facilitate long term monitoring. These techniques provide multispectral image with
resolutions that can be ranged from medium to high, as well as Hyperspectral image. These re-
motely sensed data have been successfully used for monitoring and mapping soil salinity for dec-
ades with mixed results. Many researchers have used different techniques to monitor and map soil
salinity using remote sensing data, as discussed below.

Extensive research using satellite imagery for mapping and monitoring soil salinity has
been conducted over the last three decades, mostly with multispectral sensors. These include Land-
sat Thematic Mapper (TM), Landsat Multispectral Scanner System (MSS), Landsat Enhanced
Thematic Mapper Plus (ETM+), SPOT, Advanced Spaceborne Thermal Emission and Reflection
Radiometer (Terra-ASTER), Linear imaging self-scanning sensor (LISS-111, LISS IV) and IKO-
NOS [Verma et al., 1994; Dwivedi, 2001; Dwivedi, 2008]. Application of broadband remote sens-
ing in salinity studies is restricted due to limitations in spatial and especially spectral resolution
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that masks detailed of various kinds of salt-affected lands spectral signatures [Cloutis, 1996]. A
variety of image processing methods such as supervised classification and spectral extraction tech-
niques were used in the past to extract information from these multispectral satellite data in map-
ping of salt-affected soils [Verma et al., 1994; Dwivedi, Sreenivas, 1998; Metternicht, Zinck, 2003;
Howari, 2003]. However, it is very difficult to distinguish the degree of salinity using broadband
multispectral data as there is spectral confusion. Through multispectral data it can be discriminated
only saline and non-saline classes of soil. There can be observed spectral confusion between clas-
ses of moderately, slightly salt-affected soils and normal soils. Some studies [Peng, 1998]; used
geographic information system techniques to integrate multispectral data with field data, such as
groundwater mineralization, groundwater depth, and topographic data, to overcome the weakness
of multispectral images. They were successful in mapping salinity classes, but required ground
measurements in numerous training areas and could not quantitatively estimate soil salinity.

Hyperspectral sensors are a powerful and versatile tool for monitoring environmental stress
because of the continuous sampling and the high spectral resolution. Narrow bands can discrimi-
nate critical spectral differentials in detail and can assess the salinity hazard over crop. Further-
more, hyperspectral remote sensing data provide almost continuous reflectance spectrum and help
to generate unique spectral signature of various surfaces to map them with high accuracy. Various
Image processing methods such as spectral unmixing technique, the linear mixture model (LMM)
were used for characterization and mapping salt affected soils. Various categories of salt affected
soil represented as endmembers are used for spectral unmixing analysis [Tompkins et al., 1997;
Ghosh et al., 2012]. Potential of hyperspectral satellite data in mapping of salt-affected soils were
investigated by several researchers [Dehaan, Taylor, 2002; Taylor, Dehaan, 2003; Dutkiewicz et
al., 2009].

Recently, several hyperspectral indices such as brightness index (BI), salinity index (SI),
saturation index (SI) and hue index (HI) were successfully used for quantitative mapping salt af-
fected soils, SOC and SOM using hyperspectral satellite data (Hyperion) [Zhuo et al., 2008]. The
spectral reflectance of the salt features at the soil surface has been widely studied using remote
sensing and used as a direct indicator for soil salinity detection and mapping. However, when the
soil moisture is high or the crust salt is invisible on the soil surface or mixed with other soil con-
stituents, this direct approach becomes complicated and may yield unreliable results since these
factors influence the soil spectral reflectance. On the basis of this concept, the simple ratio, SR
[Jordan, 1969], the normalized difference vegetation index, NDVI [Rouse et al., 1974], the en-
hanced vegetation index, EVI [Huete et al., 1996.], the green atmospherically resistant vegetation
index, GARI [Gitelson et al., 1996] and etc. are used to assess the impact of soil salinity over crop
growth.,

In recent years, several multivariate statistical techniques such as partial least square re-
gression (PLSR), stepwise multiple linear regression (SMLR) have been used to develop the rela-
tionship between soil and crop parameters as well as field derived spectra for assessing the impact
of soil salinity over crop growth. PLSR is one of the most common methods for analysis spectral
data for spectral calibration and prediction. In recent years, PLSR has been used to build LAI and
CCl prediction models [Madari et al., 2006; Stevens et al., 2006].

There are different techniques used for matching the measured spectra with reference spec-
tra depending on the criteria adopted for measuring the similarity/ closeness between the two spec-
tra. Broadly these techniques are distance-based, angle-based and correlation-based measure.
Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an n-D angle
to match pixels to reference spectra.

Spectral Angle Mapper mapping method was used to complete the objectives of the work
which is given below:

e to prepare soil salinity map of study area using Hyperion data;

e to prepare the crop inventory map of study area using Hyperion data;

e to evaluate soil salinity impact on wheat crop using Hyperion data.
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MATERIALS AND METHODS OF RESEARCHES
Study area

A part of Mathura district of Uttar Pradesh representing Indo-Gangetic plain was selected
for the study. Mathura is one of the western districts of Uttar Pradesh and forms a part of Yamuna
basin and lies between 26° 76" to 27° 62" North latitudes and 77° 31" to 77° 59" East longitude.
The area has good network of irrigation canal, distributaries and minors to irrigate the field. The
Mathura district is having a serious problem of salty, brackish, oily water, which is not suitable for
irrigation.

The climate of the district is semi-arid and characterized by intense hot summers, cold and
foggy winters and general dryness throughout the year except during south-west monsoon period
from July to September.

The mean annual temperature is 24.4 °C, maximum temperature in May goes up to 45 °C
and the minimum temperature dips up to 2° during winters. In winter season the mean maximum
temperature is 23.8 °C in the first week of December and last week of February. The average
annual rainfall varies between 505—620 mm and 92 % of it is received during the rainy season
comprising July, August and September months of the year.

The year can be divided into three seasons for example winter season from December to
February with January being the coldest months, summer season from March to middle of June
being the hottest months. The rainy season which receives rains from South-West monsoon in July
continues till the end of September followed by the post monsoon period from October to Novem-
ber.

The landscape of district is nearly level to very gentle sloping with moderate to poor surface
drainage. Mathura district mostly consists of alluvial soils those are formed by the silt of Yamuna
& Ganga canal, which are quite fertile whereas, the district is also having ravenous saline, alkaline
and waterlogged soils. Soils developed in the district have been influenced by parent material and
microclimate. Basically, the surface texture of soil ranges from silt loam to clay loam. In district
the large area soils are immature, light sandy colour, coarse, silt loam to clay soils, low to medium
salty with high concentration of water-soluble salts, medium calcareous, water logged with me-
dium to high water holding capacity, medium carbonic matter nitrogen and parental/soil fertility,
responsive to fertilizer use. These lands are intensively cultivated for wheat, rice, mustard, sugar-
cane, sorghum etc. crops.

Satellite Data used

o The Hyperion (EO-1) data corresponding to path and row number of 146/41 of
Mathura district were acquired on May 15, 2005, and January 07, 2005. Hyperion has 242 con-
tiguous spectral channels (22 bands with overlapped wavelengths) out of that 198 were calibrated
and covering spectral range of 356—2576 nm at an interval of 10 nm. Bands 8 to 57 are for visible-
to-near-infrared (VNIR) and 77 to 224 in shortwave-infrared (SWIR) regions [Datt et al., 2003].
All 242 bands of Hyperion are not usable because of the increased signal to noise ratio. This in-
creased noise relative to signal is the consequence of Hyperion’s greater distance from the reflect-
ing surface of the target and the increased atmospheric scattering and absorption that comes with
space platform remote sensing [Lillesand, Kiefer, 2000]. The Level 1 radiometric (L1R) product
was used in the study. According to sensor characteristics sensor spatial resolution is 30 m and
12 bit radiometric quantization [Pearlman et al., 2003].

o IRS LISS IV data acquired on April 6, 2006 and Standard FCC at 1: 15 000 scale
was generated for visual interpretation of salt affected soils, wheat crop condition and to locate
these soils during field survey.

o Georeferenced Landsat ETM+ Data (Acquired on Oct. 22, 1999) was used to dis-
criminate crops grown in the study area.

o During the generating of crop inventory map of the study area there were used mul-
tiple data to discriminate crops grown in area. January month 2005 Hyperion data was used for
generating crop inventory map which is older data set. Real ground truth information 2014 might
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not match with the year of 2005. Taking into account this fact it has been studied multiple datasets
for discriminating of crops. As agronomy point of view, it is known every crop’s length of growing
period. As per this knowledge crops were identified in particular area for 2005.
Software’s used

. ENVI 4.3, standard 5.0, (Environment for Visualizing Images, Research System,
Inc) software was used for pre-processing and processing of the satellite data. It offers “Hyperion
tool kit” to analyze Hyperspectral satellite data.

o ERDAS IMAGINE 13 was used to mask wheat area and accuracy assessment.
. ARC GIS 10.1 — developed by ESRI used to export generated maps.
o Statistical software: Statistica 7.0 is used for PLSR model.

Field data collection

A detailed field survey was carried out in the study area in order to identify the salt-affected
soils and to collect soil samples (Theta probe), groundwater table depth, chlorophyll content (CCM
200), LAI (AccuPAR LP80) to characterize impact of soil salinity over crop vigour. Various wheat
crop spectra were collected (SVC Spectroradiometer) with varying degree of salinity for calcula-
tion of narrow band indices to discriminate various stress conditions. Random sampling technique
was applied and total 29 sites (3 additional highly salt affected lands) were identified where actual
wheat crop field are selected for sample collection. Soil samples were collected from surface and
subsurface of soil. Chlorophyll content was taken from the upper, middle and lower portion of
wheat crop plant. LAI were taken upper side of crop (APAR), and below portion of canopy
(BPAR). Crop biophysical parameters are taken in 45 repetitions for better accuracy. The surface
and subsurface depth ranged from 0—15 and 15—-30—-40 cm. Thus, total of 58 samples (6 additional)
were collected from the above-mentioned sites. Wheat crop spectra were collected with varying
degree of salinity. The total number of crop spectra that was collected from SVC spectroradiometer
was more than 130 (average four spectra for each of the locations) with various vegetation condi-
tions of wheat crop. Soil samples were analyzed in laboratory to characterize pH, electrical con-
ductivity (EC).
Pre-processing of Hyperion satellite data

Hyperion data was corrected for abnormal pixels, stripping affects prior to the atmospheric
correction. In the study area, ENVI’s Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-
cubes (FLAASH) module was applied on Hyperion data for atmospheric correction. The study
area is rural and it falls in tropical climate. Thus, tropical atmospheric and rural aerosol model of
FLAASH were selected and other parameters were defined based on metadata of the Hyperion
image file.

Image endmembes were extracted following the standard processing steps of Minimum
Noise Fraction (MNF) Transformation, Pixel Purity Index (PPI), Selection of Endmembers.

Accuracy assessment was performed to determine how accurately pixels were classified to
various classes of the salt affected soils [Janssen, Van der Wel, 1994]. Performance of all classified
maps was evaluated by accuracy assessment. Point map was prepared from optical images and
used for performance evaluation. Confusion matrix was prepared to analyze accuracy of each ag-
ricultural class in crop inventory map and each soil salinity class in soil salinity map. Accuracy
was estimated in reference to ground truth data for producer’s, user’s and overall accuracy. Kappa
and kappa statistics were also calculated. Accuracy assessment was performed in ERDAS 13.

RESULTS OF RESEARCHES AND THEIR DISCUSSION
Physio-chemical characteristics of soils in the study area

The soil samples collected were air-dried to eliminate the influence of water content and
passed through a 2-mm sieve to remove large debris, stones, and stubbles. The samples were ana-
lyzed for their physio-chemical properties. The surface and subsurface soil samples were analyzed
for pH, EC, bulk density. The electrical conductivity (EC) was measured in extracted solutions
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using Electrical conductivity meter. Salt affected soils are in general categorized into slight, mod-
erate and severe classes based on salt concentration in the soil.

Soil salinity map showing different levels of salinity has shown the maximum confusion
between slightly salt affected and normal soil. An overall accuracy of 74.24 % was achieved. Crop
inventory map showing different crops, land use and land cover features by the same mapping
method SAM classifier has shown the overall accuracy of 82.14 % with a user’s and producer’s
accuracy of 85 % for wheat class.

SOIL SALINITY MAP CROP INVENTORY MAP
'(ZL R ;:' XL
AR

Mustard crop

| Highly salt affected

77' Moderately salt affected - Orchard
i [ Slightly salt affected C Scrub
I ol soil [T settlement
- Waterbody
{77 Degraded land
Fig. 1. Soil salinity map by using SAM Fig. 2. Crop inventory map by us-
mapping method ing SAM mapping method

Indices to assess the soil salinity impact over crop growth

During the field investigation period more than 130 crop spectra were collected. From the
field derived spectra 24 indices were calculated to evaluate the salinity impact over crop growth
(table 1).

These indices were calculated from satellite image as well. After completing the prepara-
tion of crop inventory map the wheat area were extracted from the crop inventory map for further
processing. Extracted wheat crop area was used to apply over indices map to see the impact of
salinity over wheat crop vigour. Some results of indices are given below (fig. 3).

Among all 24 indices, modified red edge normalized difference vegetation index
(mNDVI1 705) and structure insensitive pigment index (SIPI) have shown efficiency to map the
impact of soil salinity over wheat crop. However, both the indices behaved differently due to their
different wavelength region and so its different response to target.
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Table 1. Performance of vegetation indices for predicting soil salinity across wheat crop vigour
with coefficient of determination (R?) of linear regression

Vegetation indices Formula
til\/(l;dil:lléegxred edge normalized difference vegeta- MNDV I10s=750-705/750+705-2%445
Structure insensitive pigment index (SIPI) SIP1=800-445/800-680
Normalized difference water index NDWI=857-1241/857+1241
Enhanced vegetation index (EVI) 2.5 x (R800—- R670)/(1 + R800+ 6 xR670— 7.5 x R450)

The modified red edge normalized difference vegetation index (MNDVI 705) is a modifica-
tion of the red edge NDVI. It differs from the red edge NDVI by incorporating a correction for
leaf specular reflection. The mNDVI 75 capitalizes on the sensitivity of the vegetation red edge to
small changes in canopy foliage content, gap fraction, and senescence. Applications include pre-
cision agriculture, forest monitoring, and vegetation stress detection.

The mNDVI 7¢5 index is defined by the following equation:

MNDV I70s=750-705/750+705-2*445.

It can be understood from this formula that modified red edge NDVI mostly takes into
account NIR reflectance. In fig. 3 (c) moderately and highly salt affected area crop condition is
normal to moderately stressed. This can be explained by cell turgidity of plant. It is known that
cell structure of plant is dominant factor in NIR region. Taking into account this fact NIR reflec-
tance shows higher reflectance because of the cell turgidity. Proper irrigation can also reduce sa-
linity hazard. It is not necessary that plant is not under any kind of stress. In contrast to mNDVI,
SIPI has indicated some kind of stress due to less pigment (chlorophyll) content.

The structure insensitive pigment index (SIPI) is a reflectance measurement designed to
maximize the sensitivity of the index to the ratio of bulk carotenoids (for example, alpha-carotene
and beta-carotene) to chlorophyll while decreasing sensitivity to variation in canopy structure (i.e.
LAI). Increases in SIPI are thought to indicate increased canopy stress (carotenoid pigment). Ap-
plications include vegetation health monitoring, plant physiological stress detection and crop pro-
duction and yield analysis. SIPI is defined by the following equation:

SIP1=800-445/800-680.

In fig. 3 (b) structure intensive pigment index are taking into account leaf pigment and light
use efficiency, because of this crop condition is varying between low vigour to moderate in high
and moderately salt affected place.

The same tendency such as mNDVI can be seen in EVI and NDWI where NDWI are taking
into account canopy water content of plant whereas EVI is one of the most common predictors of
LAI. After calculation of all indices it has been selected 2 indices (MNDVI and SIPI) to evaluate
salinity impact over wheat crop growth. In ENVI software matrix option has been selected to bring
indices map and soil salinity map together to see and evaluate impact of salinity over crop growth.
Here it can be seen by using matrix option classes are divided into 9 categories. These indicators
show it can be seen that moderately salt affected places are stressed crops. The same explanation
can be for highly salt affected areas also have normal crop condition this can be because of the
proper irrigation, and agronomic management of crop.
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Normalized Difference Water Index Structure Intensive Pigment Index

Legend Legend

I Low vigour B Lo vigour
[ Medium vigour [ Medium vigour
- High vigour - High vigour
(@) (b)
Modified Red Edge Normalized Difference Vegetation Index Enhanced Vegetation Index

’

Legend Legend

- Low vigour - Low vigour
- Medium vigour - Medium vigour
- High vigour - High vigour

(©) (d)

Fig. 3. Impact of salinity over wheat crop vigour (a) NDWI, (b) SIPI, (c) MRENDVI, (d) EVI

278



Kaptbl 1 TIC B cenbckoM X03a1CTBE M 3eMIENONb30BaHUM

" _'a‘ B severly salt-affected: stressed crop

g “%.~ [ severly salt-affected: non-stressed crop
I moderately salt affected: stressed crop
Il moderately salt affected: non-stressed crop
I slightly salt affected: stressed crop

[ slightly salt affected: non-stressed crop
D normal soil: stressed crop

I normal crop: non-stressed crop

£% I severly salt-affected: stressed crop

¥ [ severly salt-affected: non-stressed crop
I moderately salt affected: stressed crop
Il moderately salt affected: non-stressed crop
I slightly salt affected: stressed crop

[0 slightly salt affected: non-stressed crop
["""1 normal soil: stressed crop

I normal crop: non-stressed crop

() (b)

Fig. 4. Impact of salinity over wheat crop:
(a) Salinity map: Modified Red Edge NDVI,
(b) Salinity map: Structure Intensive Pigment Index

Results of multivariate statistical technigues
Stepwise multiple linear regression (SMLR)

Empirical relationships developed between crop parameters (i.e., LAl and CCI) & soil pa-
rameters (i.e., pH and EC) and vegetation indices using Stepwise Multiple Linear Regression
(SMLR) showed its fitness with an R? of 0.52 and 0.41 to predict LAl and CClI, respectively.
Validation results showed the RMSE of 0.8 and 5.2 to predict LAl and CCI. Results of SMLR are
given in table 2.

Table 2. Developed empirical relationships between crop and soil parameters
and vegetation indices

Parameter Empirical relationship R?
LAI -10.12+10.45XWBI1+4.98XEVI1-87.49XNDLI-57.32XCAI+0.029XSR 0.52
CCl -151.463 +71.21XmNDVI +78.53XMSI +84.63XWBI-0.153XSR 0.41

-25.66XWBI+ 246.1X NDLI-4.3X EVI+16.65X mNDVI-0.05X 0.40
CRI1+32.65XNDWI+14.73XMSI '
11.02-11.8XWBI-7.026X EVI+113.81X NDLI-0.03XCRI2+5.69XmNDVI 0.31
pH (Surface) 0.707+0.66 XARI2+7.46 XWBI+0.03XSR 0.16
4.62+0.65xARI2+81.57XCAI-0.207XCRI2+5.34XWBI-5.93XNDWI- 026

2.96XmMNDVI-12.63XNDNI+3.2X EVI+0.20XCRI1
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Validation of empirical relationships
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Fig. 5. Validation graph of empirical relationship (a) LAl (b) CCI

Fig. 5 shows the validation of empirical relationships of predicted LAl and CCI. X axis of
the graph shows the observed LAI and CCI which is dependant and ground-based factor where Y
axis gives the information about predicted LAI and CCI and their relationship. Predicted LAI and
CCl can be used to evaluate soil salinity impact over crop growth.

Table 3. Quantification of error of estimation

Parameter RMSE R2
LAI 0.83 0.41
CClI 5.2 0.37

Partial least square regression (PLSR)

Using the Statistica 7.0 software, the relationship between crop parameters (i.e. LAl &
CCl) and Soil parameter (i.e. EC and pH) and Hyperspectral indices were assessed using a Partial
Least Squares (PLS) Regression.

A total of 24 spectral vegetation indices were calculated from reflectance responses. Indi-
ces represented each of the three main regions of the electromagnetic spectrum, i.e. VIS, NIR, and
SWIR regions, each of which is associated with specific plant attributes, such as plant pigments,
internal leaf structure and moisture content. Vegetation indices have been found to be related to
plant biophysical properties, such as leaf area index, green cover, green biomass, or capacity of
canopy to absorb photo-synthetically active radiation. To develop a multivariate relationship and
to account for the multi-collinearity between indices PLSR has been performed between indices
and the crop (i.e. LAI, CCI) and soil (i.e. EC) parameters. A separate test data has been used to
validate the results.

Fig. 7 shows the relationship between LAI, CCI and EC with Hyperspectral indices. The
indices contributing more information can be judged from its regression coefficients. The PLS
regression results on the training data set demonstrated the potential to predict the LAI, CCl and
EC from proximal hyperspectral data. There is a sufficient correlation between predicted and
measured values for the validated samples, i.e. R2 of 0.61, 0.59 and 0.49 for LAI, CCl and EC
respectively. The root means square error of prediction (RMSEP) was relatively low i.e. 0.7, 4.7
and 1.5 respectively indicates good forecast accuracy.
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Table 4. Results of PLS regression of ground derived parameters and hyperspectral indices

Parameter Nl\(l)ooc;fPoLpél?;létrE r RMSE Important Indices
LAI 2 0.7 SR, CRI2, ARI2
CCl 7 4.7 MSR, PRI, NDVI, NDLI, MNDVI, SIPI
EC 5 15 CRI1, NDVI, NDLI, NDWI, SIPI, MSR

Predicted LAl and CCI
The predicted LAl and CCl map of year 2005 were produced by using stepwise multiple linear

regression (SMLR) model (generated using year 2014 field data). The predicted map also showed
the similar tendency to map crop stress status as that of individual vegetation indices.

Predictive LAl

Legend

I Low cClvalue (<15)

Medium CCl value (15 to 30)
I +ioh CCivalue (>30)

- Low LAl value (<1.5)

[ Medium LAl value (1.5t0 2.5)
I ioh LAl value (>2.5)

(@) (b)

Fig. 8. Predicted (a) LAl and (b) CCI maps (Jan, 2005) for crop stress assessment
using SMLR statistical technique

After generating CCI and LAI maps density slicing operation has been done and classes
were categorized having value low LAI (<1.5), medium LAI (1.5-2.5), high LAI (<2.5) whereas
CCl values were low CCI (<15), medium CCI (15-30), high CCI (>30). The same tendency has

been seen in LAl and CCI predicted maps as it is in indices.
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CONCLUSIONS

Taking into consideration the data analyses, indices calculation, field data and statistical
techniques it can be concluded and the following conclusions could be made from the results of
this study:

Soil salinity map showing different levels of salinity by using spectral angle mapper map-
ping method has shown the maximum confusion between slightly salt affected and normal soil.
An overall accuracy of 74.24 % was achieved.

The crop inventory map by the same mapping method SAM classifier has shown the over-
all accuracy of 82.14 % with a user’s and producer’s accuracy of 85 % for wheat class.

The narrow band and broad band vegetation indices could capture the variability of crop
vigour with respect of soil salinity. While selecting each and every indice spectral region of the
indices (VIS, NIR, SWIR), formula should be carefully considered in order to evaluate impact of
soil salinity over crop growth. Results showed that mostly salt affected lands are having stressed
crop but on the other hand some high vigour crops also can be seen in the affected land. This can
be explained by agronomic point of view there can be proper irrigation facilities, management
practices and also canopy cover will also play a role while calculating these indices.

Empirical relationships developed between crop biophysical parameters such as LAl and
CCl and soil parameters (pH and EC) and vegetation indices using stepwise multiple linear regres-
sion (SMLR) multivariate statistical method could show its possibility with an R? of 0.52 and 0.41
to predict LAl and CCI, respectively. Validation results showed the RMSE of 0.8 and 5.2 to predict
LAI and CCI.

Partial least square regression (PLSR) statistical technique by using Statistica 7.0 software
regression results on the field data demonstrated the potential to predict the crop parameters (i.e.
LAI and CCI) and soil parameter (i.e., EC). The predicted LAI and CCIl map produced by SMLR
also showed the similar tendency to map crop stress status as that of individual vegetation indices.

Finally, taking into account the fact that currently the major parts of soil of Mathura District
of Uttar Pradesh are affected (26.46 %) by salinity and alkalinity. Remote sensing especially hy-
perspectral remote sensing with high spectral resolution can help to monitor and map salt affected
areas with high accuracy which can help landowners, agronomists to manage better reclamation
procedures. Therefore, at the expense of reducing mineralization and lowering the ground water
levels on the irrigated lands can be prevented from the increase of moderately and highly saliniza-
tion. Otherwise salt affected soils with various degree of salinity can adversely affect physico-
chemical properties of soils which cause reduction in soil fertility and its productivity and it also
negatively affects on plant growth and development. Complete system of desalinization of all types
of soils has not been entirely investigated yet. This shows the importance of through comparative
analyses of data, collected from research and investigations and generalizing working experience
of leading landowners and farm associations. The solution to the problem is call of the times.
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