COMPARISON OF QGIS INTERPOLATION MODULES CAPABILITIES FOR MARINE CLIMATE RESEARCH ON DUTY WITH AN ARRAY OF LOW-SECURITY DATA

DOI: 10.24057/2414-9179-2016-1-22-76-88

View or download the article (Rus)

About the Authors

A. M. Novikova

FSBSI «Institute of natural and technical systems»
Russian Federation

Department of Oceanography Actual Problems, researcher

Sevastopol, 299011, Russia

A. B. Polonskij

FSBSI «Institute of natural and technical systems» Oceanographic Center
Russian Federation

head, professor

Sevastopol, 299011, Russia

A. A. Novikov

Branch of M.V. Lomonosov Moscow State University, Geography Department
Russian Federation

senior teacher

Sevastopol, 299001, Russia

Abstract

In the article the urgency of modern methods’ active use in oceanographic data spatial analysis from the perspective of geo-information and geostatistical approaches is approved. There are analyzed the possibilities of some open GIS QGIS statistical modules for practical problems of data quality rapid assessment solution. The quality of QGIS interpolation modules is estimated representing methods of kriging and radial basis functions (splines) by using an array of low-security data.

Keywords

QGIS, statistics modules, kriging, regularized spline with tension, bicubic spline interpolation with Tikhonov regularization

References

  1. Dem’yanov V.V., Savel’eva E.A. Geostatistika: teoriya i praktika [Geostatistics: Theory and Practice], pod red. R.V. Arutyunyana. Moscow: Nauka, 2010. 327 p.
  2. Koshel’ S.M. Teoreticheskoe obosnovanie struktury i funkcij bloka modelirovanija rel’efa v GIS: dissertacija [Theoretical Study of the Structure and Functions of the Relief Modeling Unit in GIS: the dissertation]. Moscow, 2004. 119 p.
  3. Koshel' S.M., Musin O.R. Metody cifrovogo modelirovaniya: kriging i radial'naya interpolyaciya [Digital Modeling Methods: Kriging and Radial Interpolation]. – Informacionnyj byulleten' GIS-Associacii, 2001, № 2(29)–3(30), pp. 23–24 (in Russian).
  4. Novikova A.M., Novikov A.A. GIS kak instrument hraneniya, obrabotki i vizualizacii klimaticheskih dannyh [GIS as a tool for storage, processing and visualization of climate data]. – Materialy Nauchnoj konferencii «Lomonosovskie chteniya» 2015 g. i Mezhdunarodnoj nauchnoj konferencii studentov, aspirantov i molodyh uchenyh «Lomonosov-2015", pod red. M.EH. Sokolova, V.A. Ivanova, N.N. Milenko, V.V. Hapaeva, N.V. Velichko. Sevastopol: OOO EHkspresspechat', 2015. Pp. 34–35.
  5. Porotov G.S. Matematicheskie metody modelirovaniya v geologii [Mathematical methods of modeling in geology]. St. Petersburg, 2006, 223 p.
  6. Mitasova, H., Mitas, L., and Harmon, R. Simultaneous spline approximation and topographic analysis for lidar elevation data in open-source GIS. IEEE Geoscience and Remote Sensing Letters, 2005. № 2. Pp. 375–379.
  7. Neteler M., Mitasova H. Open Source GIS: A GRASS GIS Approach: Third edition. NewYork: Springer, 2008. 420 p.
  8. Petrasova A., Harmon B., Petras V., Mitasova H. Tangible Modeling with Open Source GIS. Springer International Publishing, 2015. 135 p.

For citation: Novikova A.M., Polonskij A.B., Novikov A.A. COMPARISON OF QGIS INTERPOLATION MODULES CAPABILITIES FOR MARINE CLIMATE RESEARCH ON DUTY WITH AN ARRAY OF LOW-SECURITY DATA. Proceedings of the International conference “InterCarto. InterGIS”. 2016;22(1):76–88 DOI: 10.24057/2414-9179-2016-1-22-76-88 (in Russian)